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PREFACE 
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SECTION I 

INTRODUCTION 

I. IDENTIFICATION 

The CAMP Armories Benchmark Suite facilitates (he evaluation of Ada software engineering en- 

vironments and microprocessors intended for use in armonics1 applications. The suite features both 

compilation and execution benchmarks to measure the capabilities of compiler/run-time systems. All 

benchmarks in this suite are portable and vv ill permit comparisons to be made between widely different 

Ada systems. 

This volume identifies the benchmarks and benchmark drivers, and suggests techniques for applying 

the Benchmark Suite. In addition, the structure, purpose, and methodology of the suite are explained to 

familiarize readers with the suite and to facilitate the evaluation of the suite by engineers. For those 

interested in using the benchmarks, a guide is provided in Section V. Appendix A contains data collected 

in the process of running the Benchmark Suite. 

2. SYSTEM OVERVIEW 

This Armonics Benchmark Suite serves a dual purpose: it offers a means for assessing the perfor- 

mance of CAMP parts and, at the same time, provides support for evaluating the suitability of compiler 

systems ami their target machines to armonics applications. 

Ada compiler performance is tested by a series of compilations, based on CAMP packages, which 

require a compiler to process complex uses of Ada generic units. These advanced (but standard) Ada 

features are used heavily in the CAMP parts and are central to (he development and use of reusable 

software. 

Other benchmarks of the suite are targeted primarily at run-time performance issues such as storage 

requirements, execution time, and computational accuracy. These benchmarks consist of a selection of 

CAMP parts which have been chosen as representative of the needs of armonics applications. Testing, 

using these benchmarks, is facilitated by embedding the benchmarks within portable drivers, written in 

Ada. Effectively, this allows the benchmarks to run themselves. 

The Benchmark Suite can support a number of benchmarking scenarios: 

• A project wishes to evaluate compilers for use in the development of a reusable parts library. The 

Mrife provides test code for evaluating compiler/linker systems. 

• A compiler developer wants to measure the performance of his compiler/run-time system against an 

established r'wlard. A group of benchmarks documented in this volume provides a standard for 

comparison between different systems. 

armament electronics 



• An armonics application needs data on the memory utilization and timing efficiency of several 

compilers in order to select an appropriate compiler for a new project. The benchmarks provide 

opportunities for measuring these features of a given compiler. 

• A potential user of CAMP parts wants specific performance data on the parts. The Benchmark 

Suite gives a user the ability to measure performance for a selected group of parts on varying 

architectures. 

• A scientific application requires transcendental functions of known accuracy on a specific system 

and is considering the CAMP polynomial parts. The benchmarks supply data on the scientific 

functions of the CAMP Polynomials package. 

The Benchmark Suite is supplemented by a set of procedures, encoded in DEC VAX Digital Com- 

mand Language (DCL). By performing these procedures (or their equivalents on other operating 
systems), an engineer may install, compile, and run the various benchmarks efficiently. Details on the use 

of the Benchmark Suite and its command procedure environment are discussed in Section V. 

3. VOLUME OVERVIEW 

This report contains five main sections: 

1. Introduction: Introduces the CAMP Benchmark Suite and this volume. 

2. Benchmark Definitions: Explains the system of classes and levels by which the benchmarks are 

characterized. This section also introduces key terms and gives a tabular summary of benchmarks 

contained in the suite. 

3. Purpose and Design: Discusses the procedure used to run each of the benchmarks and gives 

information about their structure and scope. For each benchmark, this section provides the follow- 

ing information where applicable: 

• Benchmark name • Benchmark correct outputs 

• Compilation structure • Data to be recorded 

• Benchmark driver design • Methods for recording data 

• Benchmark inputs 

4. Methodology: Gives the overall methodology used to construct the Benchmark Suite in terms of 

portability, validity, and usability. 

5. Using the Benchmarks: Explains how to use the benchmarks on a project. Emphasis is placed on 

making use of (he suite command procedure environment to facilitate benchmarking. 



SECTION II 

BENCHMARK DEFINITIONS 

1. BENCHMARK LEVELS 

The CAMP Armonics Benchmark Suite supports benchmarking at three hierarchical levels: 

• TLCSC benchmarks: complete operational subsystems; 

• LLCSC benchmarks: sequentially driven calls to integrated CAMP parts; 

• Unit benchmarks:    benchmarks of individual parts.    (This level is generally reserved for the 

benchmarks derived from CAMP polynomial parts .) 

2. BENCHMARK CLASSES 

The benchmark suite is functionally partitioned into three classes. The compilation benchmarks test 

the ability of an Ada compiler to process source code typical of armonics applications and reusable 

software. Benchmarks based on the CAMP Polynomials scientific function package are called the 
polynomial benchmarks. Finally, the benchmarks developed from CAMP higher-level armonics parts are 

referred to as integrated execution benchmarks. The following subsections define the three classes of 

benchmarks in greater detail. 

a. Compilation Benchmark Class 

The compilation benchmarks test an Ada compiler's ability to process reusable software. The 

benchmarks concentrate on the complex syntax and semantics of several Ada armonics-oriented im- 

plementations using CAMP parts. These implementations are skeletal in that they do not actually imple- 

ment an armonics subsystem but merely collect the necessary CAMP parts via generic instantiation. The 

instantiated parts are invoked in the benchmark code although the run-time effects of the invocations are 

not within the designed scope of testing. The compilation benchmarks are valid tests of a compiler only 

up to (and including) the linking phase. 

b. Polynomial Benchmark Class 

The Benchmark Suite includes benchmarks based on the CAMP Polynomial parts (part number 

P688). These parts cover a range of basic mathematical functions, and provide a variety of techniques for 

obtaining results. For each benchmark, the benchmark drivers obtain both execution time data and func- 

tion argument-result pairs. In addition, compilation and linkage editing of the polynomial benchmarks 

afford an opportunity to collect object code size data on all of (lie functions of the Polynomials package. 



A software tool provided with the Benchmark Suite performs accuracy analysis and generates 
reports Tor the polynomial benchmarks. This tool lakes the output produced by the benchmarks and 

generates a document incorporating time-consumption data and function-result accuracy measurement. 

The following information is provided by the tool: 

• 'Truth values" for each function over that function's benchmarked domain; 

• Absolute error in the result of each argument-result pair 

• Relative error in the result of each pair 

• Maximum relative error tracking over the argument domain 

• Maximum absolute and relative error over the argument domain 

• Root-mean-square relative error over the argument domain 

c. Integrated Execution Benchmark Class 

The integrated execution benchmarks test aggregations of CAMP armonics parts. These 

benchmarks concentrate on three of the major operational functions supported by the CAMP parts: 

• Waypoint steering 

• Navigation 

• Kalman filter 

In the waypoint steering and navigation cases above, data is gathered on CAMP parts in the 

context of an armonics application. This method has the virtue of testing the parts in the kinds of 

programs in which they will actually be applied. The benchmark based on the CAMP Kalman filler parts 

provides data on these parts as they operate in a unit testing environment. This method permits the full 

inclusion of all subprograms in the CAMP Kalman filter subsystem TLCSCs. 

Output data from the integrated execution benchmark drivers consists of timing and result data 

on the benchmark subprograms. The timing data characterizes the execution time required to make a 

single call to the benchmark subprogram. The result data from the subprogram may be compared with the 

standard data supplied by CAMP as part of the Benchmark Suite. This comparison allows the engineer 

performing the benchmarks to spot errors and inaccuracies in run-time data processing on his system. 



<l. Summary 

Table 1 summarizes the benchmarks in (he CAMP Armonics Benchmark Suite.   For each 
benchmark, the table provides the following information: 

• Benchmark name 

• Benchmark number: a unique number for each set of benchmarks, corresponding to Section HI of 

this document. This number gives the subsection and the paragraph of Section III where the 

benchmarks are described. In the case of the polynomial benchmarks, only the subsection number is 

applicable. The paragraph number tabulated for the polynomial benchmarks is only for serializa- 
tion. 

• Level: TLCSC (T), LLCSC (L), or Unit (U) as defined above 

• Class: Compilation (C), Polynomial (P), or Integrated Execution (I) as defined above 

• Objective: the objective of the benchmark 

• Description: a description of the TLCSCs used in the benchmark (for the polynomial benchmarks, 
the description lists the polynomial expansion algorithm tested) 

• Data to be recorded: summary of data values generated by running the benchmark and recorded in 
Appendix A of this report 



TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY 

(1 OF 2) 

Benchmark Data 

Name No. Lev. Cb. Objective Description to Record 

Compilation 1 2.1 L C Test compilability of 
parts needed in North 
Pointing Navigation. 

Packages compiled: 
N_P_NavJ>arl», 
Polynomial_Part«, 

General_Purpose_Math, 
Coord_Veclor_Matrix_Alg, 

StandardJTrig, 
Basic_Data_Types, 

Conversion_F»ctor», 
WOS72 (Metric). 

WGS72 (Unities*). 
Universal_Constants 

Object code size. 
Successful compile. 
Compilation time. 

Compilation 2 2.2 L C Test compilability of 
parts needed in Waypoint 

Steering. 

Packages compiled: 

Waypoint_Steering, 
Oeometric_Operations, 
Coord_Vector_Matrix_Alg, 
Polynomial_Parts, 
Oeneral_Purpose_Math, 

StandardJTrig, 
Basic_Data_Types, 
Conversion_Factors, 
WOS72 (Metric), 

Object code size. 
Successful compile. 

Compilation time. 

Compilation 3 2.3 L C Test compilability of 

Universal_Constants 

Packages compiled: Object code size. 

parts needed in Kalman Kalm_Rlter_Compt_H_Par1s, Successful compile. 

Filter. Kahn_Fiher_Common_Parts, 
Polynomial_Parts, 
Oeneral_Purpose_Malh, 
Kahnan_Data_Types, 

Compilation time. 

Integrated 3.1 T 
j 

Test execution efficiency 

General_Vector_Mau-ix_Alg 

Packages tested: Execution lime. 

Execution 1 of a guidance compulation Waypoim_Steering, Code size. 

Integrated 3.2 T I 

implementation. 

Test execution efficiency 

S ignal_Processmg Result data. 

Packages tested: Execution time. 

Execution 2 of a navigation operations 
implementation. 

Cotnm_Navigation_Parts, 
Directton_Cosme_Matrix 
Oeneral_Purpose_Math, 
Oeneral_Vector_Matrix_Alg, 

Code size. 
Result data. 

Integrated 3.3 T I Test execution efficiency 

Wander_Az_Nav_Parts 

Packages tested: Execution time. 

Execution 3 of a Kalman Filter 
implementation. 

Abstract_Data_Structs, 
Kabn_Filter_Common_Parts, 
Kalm_Filter_ComptJl_Parts, 

Kalm_filter_Compx_H_Parts. 

Code size. 
Result data. 

Sine 4.1 U P Test execution efficiency Methods tested are: Execution lime. 

Execution and result precision 
of sine function. 

Taylor Series, 
Modified Taylor Series, 

Hastings Algorithm, 
Chebyshcv Polynomial, 

System Functions 

Code size. 
Result Data 

Conine 4.2 U P Test execution efficiency Methods tested are: Execution lime. 

Execution and result prn ivion 
of cosine function. 

Taylor Scries, 
Modified Taylor Series, 
Hastings Algorithm, 
Hart Algorithm, 

System Functions 

Code size. 
Result Data 



TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY (CONCLUDED) 

Benchmark 
Name No. Lev. Ch. Objective Description 

Data 
to Record 

Tangent 

Execution 

4.3 U P Teal execution efficiency 
and result precision 

of tangent function. 

Methods tested are: 

Taylor Series, 
Modified Taylor Series. 
Hastings Algorithm, 
System Functions 

Execution time. 

Code size. 
Result Data 

Arcsine 
Execution 

Arccosine 
Execution 

4.4 

4JS 

U 

0 

P 

P 

Test execution efficiency 
and result precision 
of arcsine function. 

Test execution efficiency 
and result precision 
of arccosine function. 

Methods tested are:                      Execution time. 
Taylor Series,                             Code size. 
Fike Semicircle,                            Result Data 
System Functions 

Methods tested are: 
Taylor Series, 

Fike Semicircle, 
System Functions 

Execution time. 
Code size. 
Result Data 

Arctangent 
Execution 

4.6 u P Test execution efficiency 
and result precision 

of arctangent function. 

Methods tested are: 
Taylor Series, 

Continued Fraction, 
Hastings Algorithm, 
System Functions 

Execution time. 
Code size. 
Result Data 

Square Root 
Execution 

4.7 V P Test execution efficiency 
and result precision 
of square root function. 

Methods tested are: 

Newton-Raphson 
Modified Newton-Raphson 

Execution time. 
Code size. 
Result Data 

Lug 10 
Execution 

LogN 
Execution 

4.8 

4.9 

u 

u 

P 

P 

Test execution efficiency 
and result precision 
of log 10 function. 

Test execution efficiency 
and result precision 
of log n function. 

Methods tested are: 
Taylor Series, 
Cody-Wate, 
System Functions 

Execution time. 
Code size. 
Result Data 

Methods tested are: 
Taylor Series, 
Cody-Waiks, 
System Functions 

Execution time. 
Code sire. 
Result Data 

Natural Log 
Execution 

4.10 u P Test execution efficiency 
and result precision 
of natural log function. 

Methods tested are: 
Taylor Series, 
Cody-Wane 

Execution time. 
Code size. 
Result Data 



SECTION III 

PURPOSE AND DESIGN 

1. GENERAL REQUIREMENTS 

The CAMP Armonics Benchmark Suite meets the following general requirements: 

• Utilizes CAMP parts in structures which simulate their actual use in typical user applications 

• Utilizes test data modeled on typical user application data 

• Helps assess Ada compilation capabilities, object code size, execution time, and output results 

• Permits  comparison   between   a  variety  of  host/target  combinations   using  different   Ada 
compiler/run-time systems 

• Allows modification to meet specific needs of future users 

• Exhibits high portability 

• Is highly automated 

a. Identifying Ada Compiler Inadequacies 

One problem faced during the development of the CAMP parts was the inability of some Ada 
compilers to process complex generic units. This is important because Ada generic units play a pivotal 
role not only in the future development of reusable software, but also in the application of that software. 
In order to identify Ada compiler inadequacies in the area of reusable software the CAMP benchmarks 
provide Ada source code benchmarks which heavily utilize Ada generic units. 

The compilation benchmarks of the Armonics Benchmark suite go beyond the limited scope of 
testing in the official Ada Compiler Validation Capability (ACVC) tests. While the ACVC tests 
demonstrate conformance to the Ada language specification, the effect of combining language features in 
complex ways is not sufficiently addressed. The CAMP compilation benchmarks attempt to bridge the 
gap between the objectives of the ACVC tests and the necessities of complex software applications. It is 
believed at this point that very few ACVC-validated Ada compilers will, in fact, correctly handle the 
CAMP compilation benchmarks. 



b. Testing Calculation Accuracies 

The CAMP parts, including those selected as benchmarks, consist or portable Ada source code. 

However, certain aspects or the runtime performance of the parts may still vary from system to system. 

The accuracies of numeric compulations, for instance, are guaranteed by the Ada language definition to 

meet the minimum requirements specified in the software, but, this does not mean that different compiler 

implementations of Ada will handle numeric computations in the same way. A compiler is free both to 

provide more accuracy than is requested by application software, and to support less accuracy based on 

the limitations of the target machine. For this reason, the results of calculations performed by portable 

software may not themselves be portable. Differences in numeric accuracies and range limits in Ada 

systems introduce the possibility of unanticipated error in extensive calculations. This factor must be 

considered by potential users of the CAMP parts as it would have to be by users of any software (or 

hardware) product. 

The two classes of execution benchmarks (polynomial and integrated execution) in the Ar- 

monics Benchmark Suite address the issue of varying computational accuracies in different Ada systems. 

They provide a standard means of generating data from the kinds of complex calculations involved in 

armonics applications. 

c. Testing Time and Space Performance 

An important performance factor in real-time embedded (RTE) environments is space and time 

efficiency: Software must be kept small because hardware must be kept small in RTE systems; software 
must also operate efficiently because of the throughput requirements of real-time processing. The execu- 

tion benchmarks of die Benchmark Suite support execution-time testing of CAMP parts as they operate 

on various Ada compiler/target machine systems. Selected CAMP parts make up the benchmarks which 

cover operations common to many armonics applications. 

The size of the object code generated from the benchmarks reflects the qualities of the compiler, 

the CAMP parts, and, to a lesser extent, the instruction set architecture of the application target machine. 

Although RTE systems are being built with more and more memory, hardware capacity and its associated 

costs are still the major limiting factor in increasing the computational power of embedded applications. 

The execution benchmarks of the Benchmark Suite should facilitate the evaluation of Ada compiler/linker 

systems based on object code size. Linker map data, obtained by compiling and linking the benchmarks, 

can be utilized in judging an Ada system's appropriateness to an embedded application in the light of 

hardware capacity constraints. 



2. COMPILATION BENCHMARKS 

The purpose of the compilation benchmarks is to determine the compilability and linkability of a 
large selection of CAMP parts integrated into typical annonics application groupings. Results from 
compiling this series of benchmarks reflect on the ability of Ada compilers to correctly process CAMP 
parts. Since these parts are both reusable and armonics application-oriented, the validity of the 
benchmarks extends strongly to these two areas. 

a. Compilation Croup 1 

CAMP parts utilized as benchmarks in Compilation Group 1 represent those which might be 
needed in a north-pointing navigation implementation. The structure, components, and operating proce- 
dure of this compilation benchmark follow. 

NPNav USER APPLICATION PROGRAM 

pkgVilSqRt b naw GPMati.Square_Root... 
pkg AngVelSqRt Is new QPMath.Squara_.Root... 
pkg AccelSqRt Is naw QPMaJh.Square_Root... 
pkg DIstSqRt      Is naw QpMath.Sojuara_Root... 

pkg VelVOpns Is naw CVMA.Vactor_Opns ... 
pkg AngValVopns Is naw CVMA.V«ctof_Opns ... 
pkg Accel VOpns Is naw CVMA.Vector Opns ... 
pkg DtetVOpns Is naw CVMA.Vactor_Opre... 
fn   CrossProd_AW_W Is naw CVMA.Cross_Produot... 

fn   CorAccel Is naw NPNav.Computa_Corio*s_AcealaraHon 
pkg RadOfCurv Is new NPNav. RadlusofCurvature ... 
pkg Latlnt        Is new NPNav.Latitudelntegratlon ... 

Figure 1.  Compilation 1 Structure 

• Compilation structure: Figure 1 depicts the compilation structure. An Ada main procedure is 

compiled in the context of several CAMP packages. The order of compilation for the packages 

corresponds to the partial ordering induced by the context clauses {with statements) of the packages 

>>► 
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and driver procedure.  A command file in the tool set supplied with the benchmark suite gives a 

correct compilation order and compiles the compilation benchmarks automatically on VAX/VMS. 

• Benchmark driver design: 

1. Import North_Pointing_Navigation_Parts (CAMP part number POO I), General_Purpose_ 

Math (P687), Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621), 

WGS72_EUipsoid_Metric_Data (P611), WGS72_EUipsoid_Unitless_Data (P613), and 

SYSTEM. 

2. Begin main procedure definition. 

3. Declare types and subtypes necessary for benchmark. 

4. Instantiate generic units. ;om imported packages. 

5. Declare objects necessary for benchmark. 

6. Invoke instantiated and derived subprograms (executable part of driver). 

7. End main procedure definition. 

• Data to be recorded: 

1. Successful compilation; 

2. Successful link; 

3. Object code size (size of load module produced, if any); 

4. CPU time consumed by the compiler. 

• Methods for recording data: The source files for this compilation benchmark are compiled in one 

group with the source files for the others. Error-free compilation is indicated by the compiler 

through listings or by some other mechanism. CPU time consumption is noted when it is reported 

by the compiler. The driver program is then linked and the size of the executable image recorded. 

II 



b. Compilation Croup 2 

CAMP parts utilized as benchmarks in Compilation Group 2 represent those which might be 

needed in the waypoinl steering of a missile application. The structure, components, and operating proce- 

dure of this compilation benchmark follow. 

• Compilation structure:  Figure 2 depicts the compilation structure. The structure is similar to that 

of Compilation Group 1. 

• Benchmark driver design: 

1. Import Waypoint_Steering (CAMP part number P661), General_Purpose_Math (P687), 

Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621), WGS72_Ellipsoid_ 

Metric_Data(P611). 

2. Begin main procedure definition. 

3. Declare types and subtypes necessary for benchmark. 

4. Instantiate generic units from imported packages. 

5. Declare objects necessary for benchmark. 

6. Invoke instantiated and derived subprograms. 

7. End main procedure definition. 

• Data to be recorded: As in compilation group 1 

• Methods for recording data: As in compilation group 1 

c. Compilation Croup 3 

CAMP parts utilized as benchmarks in Compilation Group 3 represent those which might be 

needed in a Kalman filter of a missile application. The structure, components, and operating procedure of 

this compilation benchmark follow. 

• Compilation structure: Figure 3 depicts the compilation structure. The structure is similar to that 

of the other two compilation groups. 

• Benchmark driver design: 

1. Import Kalman_Filter_Complicated_H (CAMP part number P653) and Kalman_Filter_ 

Data_Types (P622). 

2. Begin main procedure definition. 

3. Declare types and subtypes necessary for benchmark. 

4. Instantiate generic units from imported packages. 
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Goo 

WPS 

USER APPLICATION PROGRAM 

pkg SCRSqRoot Is new GPMath. SquareRoot ... 
pkg VelSqPoot is neti GPMath. SquareRoot ... 
pkg MSqRoot      is new GPMath. SquareRoot  ... 

pkg OnitVelVopns is new CVMA.VectorOpna  ... 
pkg VelVOpns is new CVMA.Vector_Opns  ... 
fn   CrossProd       is new CVMA.Crosa_Product ... 

pkg SVO is new WPS.Steering_Vector Operations  ... 
pkg CTEHOpns is new *PS.Cros8track_and HeadingErrorOperations 

Figure 2.  Compilation 1 Structure 

4"      X 
Poly GPMath 

wmv 

I KFCommon 

KFComplicatad 

W      H 

KDT 

GVMA 

USER APPLICATION PROGRAM 

pkq KPT is new Kalman_Filter_Data_Types  ... 

fn    Kalman Gain is new KalmanFilter Complicated_H_Parts. 
Compute KaTmanGain ... 

pk<j KPIpdate is new Kalman Gilter Complicated_H_Parts. 
Kalman Update  ... 

Figure 3.  Compilation 3 Structure 
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5. Invoke instantiated subprograms. 

6. End main procedure definition. 

• Data to be recorded: As in the other two compilation groups 

• Methods for recording data: As in the other two compilation groups 

3. INTEGRATED EXECUTION BENCHMARKS 

This section describes execution benchmarks based on CAMP parts, both integrated for use in a 
typical missile application and in a unit-testing environment. The purpose of the integrated execution 
benchmarks is to generate data on these CAMP parts and to afford an opportunity for determining code 
sizes. 

a. Integrated Execution I 

In this section a benchmark based on a guidance computer implementation is described. Table 
2 lists the CAMP parts used in this benchmark. 

TABLE 2. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 1 

TLCSCNAME PART NO. LLCSC NAMES 

Waypoint Steering P66I Compute Turn Angle and Direction 
Compute Turning and Nonturnmg Distances 
Distance to Current Waypoint 
Steering Vector Operation* with Arcaine 
Turn Test Operations 
Cross Track and Heading Error Operations 

Signal Processing Parts P686 Absolute Limiter 
Upper Lower Limiter 

• Benchmark Driver Design: This benchmark is based on the guidance computer of a missile ap- 

plication. The driver consists of several task bodies declared in the declaration section of a main 

procedure. These tasks are activated after the elaboration of the driver declaration section. A null 

executable part of the driver runs to completion and awaits the termination of the tasks. 

The tasks call the benchmark subprograms in the course of execution. A counter keeps track of 

calls to a central message management task. When the counter value reaches a certain level, the 

task is aborted and becomes abnormal. As the other tasks attempt to rendezvous with the aborted 

task, they are forced to select a "terminate" entry. Then, these tasks also become abnormal When 

the child tasks of the driver have all become abnormal, the driver terminates execution. 

• Data to be recorded: 

- Execution time 

- Code sizes 
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• Result data 

• Methods for recording data: Execution time is obtained directly from the benchmark driver. The 

code sizes of the various CAMP parts may be taken from linker map files. Result data is also 

generated directly by the benchmark. 

• Benchmark inputs: Before execution, the benchmark driver requests data about the system: the 

compiler used, the compiler host, and the compiler target. Then iteration values are requested to 

tell the driver how many times to execute a benchmark subprogram. The benchmarks themselves 

are supplied with hard-coded input data by the driver software. These inputs are coded as variables 

to preserve the functionality of the benchmarks, which would not normally process static data. 

• Benchmark correct outputs: A File containing standard output is supplied with the benchmark suite. 

It should be used for comparison with the actual benchmark output. 

b. Integrated Execution 2 

In this section a benchmark based on a navigation computer implementation is described. Table 

3 lists the CAMP parts used as benchmarks. 

TABLE 3. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 2 

TLCSCNAME 

Common Navigation Paris 

Wander Azimuth Navigation Parts 

Direction Conine Matrix 

General Vector Matrix Algebra 

General Purpose Math Parts 

PART NO. LLCSC NAMES 

P0OI Update Velocity 
Compute Ground Velocity 
Compute Gravitational Acceleration Sin Lai In 

P002 

PM4 

P682 

P687 

Radius of Curvature 
Compute East Velocity 
Compute North Velocity 
Compute Latitude using 2-Value Arclan 
Compute Longitude using 2-Value Arctan 
Compute Wander Azimuth Angle 
Earth Rotation Rate 
Earth Relative Navigation Rotation Rates 
Compute Coriolis Acceleration 
Total Platform Rotation Rate 

CNE Operations 

Matrix Matrix Multiply Restricted 

Accumulator 

• Benchmark Driver Design: This set of three benchmark drivers is based on the navigation opera- 

tions of a missile application. Each driver uses the same basic Ada linkage closure of units, sub- 

stituting dummy code is appropriate. The first phase of the benchmarking run is done by the 

driver, "Execute_Navigalor_Test," which calls most of the benchmark subprograms. The remain- 

ing benchmark subprograms are called by two drivers embedded in the executable part of the 

Navigation Operations package. 

• Data to be recorded: 
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1. Execution lime 

2. Code size 

3. Result data 

• Methods for recording data: As in Integrated Execution 1 

• Benchmark inputs: As in Integrated Execution I 

• Benchmark correct outputs: As in Integrated Execution 1 

c. Integrated Execution 3 

In this subsection a benchmark based on the CAMP Kalman filter unit tests is described. Table 
4 lists the CAMP parts used as benchmarks. 

TABLE 4. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 3 

TLCSCNAME PART NO. LLCSC NAMES 

Kalman Filter Common Parts P65I Error Covariance Matrix Manager 
State Transition and Piocesa Noise Matrices Manager 
State Transition Matrix Manager 

Kalman Filler Compact H Parts P6S2 Compute Kalman Gains 
Update Error Covariance Matrix 
Update State Vector 
Sequentially Update Covariance Matrix And State Vector 
Kalman Update 
Update Error Covariance Matrix General Form 

Kalman Filler Complicated H Parts P653 Compute Kalman Gam 
Update Error Covariance Matrix 
Update Stale Vector 
Sequentially Update Covariance Matrix And Stale Vector 
Kalman Update 
Update Error Covariance Matrix General Form 

• Benchmark driver design: The three drivers of this benchmark are based on the unit tests of the 

CAMP Kalman Alter parts (P6S1, P6S2, and P6S3). Three main procedures import the three Kal- 

man TLCSCs and call the benchmark subprogram," within them. 

• Data to be recorded: 

- Execution time 

- Code size 

- Result data 

• Methods for recording data: As in the other two integrated execution benchmarks 

• Benchmark inputs: As in the other two integrated execution benchmarks 

• Benchmark correct outputs: As in the other two integrated execution benchmarks 
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4. POLYNOMIAL BENCHMARKS 

The purpose of the polynomial benchmarks is lo generate run-lime data on the "slide rule" functions 

of the CAMP Polynomials package and lo provide an opportunity Tor collecting object code size data. 

The run-time data on the benchmarks is produced by benchmark drivers and includes information both on 

the time-consumption of the benchmarks and the numeric output they produce. 

Table 5 presents a summary of the execution benchmarks which have been created from the CAMP 

Polynomials parts. Entries marked "X" indicate a function and a numerical algorithm. For each math- 

ematical function of the CAMP Polynomials package, all of the available algorithm implementations are 

used as benchmarks. The floating point types of the arguments and results are varied according to the 

number of terms in each algorithm's polynomial expansion. For example, an algorithm for a 5-term 

polynomial expansion may be instantiated to use 6 floating-point digits while an algorithm for a 7-term 

expansion is instantiated to use 9 digits. 

TABLE 5. CAMP POLYNOMIAL PARTS EXECUTION BENCHMARKS 

Function 

Sine 

Cosine 

Tangent 

Arcsine 

Arccosine 

Arctangent 

Square root 

Taylor 
Series 

X 

X 

X 

X 

X 

X 

Modified 
Taylor 
Series 

X 

X 

X 

Hastings 

X 

X 

X 

X 

Chebyshev 

X 

System 
Functions 

X 

Hart Fike 
Continued 
Fraction 

Newton- 
Raphaon 

Modified 
Newton 
Raphson 

Cody- 
Wake 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Log 10 

Log2 

Nat Log 

■ -   -  - ■ 

X X 

X 

X 

X 

Tables 6 through 12 present details of the polynomial function benchmarking. An "X" entry in a 

table indicates an algorithm for computing a function and the number of terms of that algorithm to be 

applied in the compulation. Detail tables are not included for the various log functions shown in Table 5 
since the log function testing is confined to the Polynomials Cody-Waite LLCSC. Term counts are not 

applicable lo the parts of this LLCSC. 

• Benchmark driver design (for all polynomial benchmarks): 

1. Import the CAMP Polynomials package (P688), Benchmarking_Tools package, and the 

Polynomial_Benchmark package. 

2. Define a floating point type of some precision. 

3. Instantiate a Polynomials package LLCSC for the defined type. 

4. Instantiate the Polynomial_Benchmark package for the defined type. 
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TABLE 6. DETAIL OF SINE PERFORMANCE BENCHMARKS 

Number 
of 

Term 
Taylor 
Serin 

Modified 
Taylor 
Serin 

ll»«linf* 
AlgifiUim 

Ctabyahev 
Polynomial 

system 
Fnactioni 

4 

5 

6 

7 

S 

VAX 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

X 

5. Instantiate the Benchmark procedure (procedure named Benchmark) from the PolynomiaL 

Benchmark package. Pass in a function subprogram as a generic actual parameter. This is 

the subprogram to be benchmarked. Pass in an identity function from the Benchmarking. 

Tools package as another generic actual parameter. This subprogram helps to compensate 

for lime costs associated with the design of the benchmark driver software. A new 

Benchmark procedure instantiation is required for each subprogram benchmark from the 

Polynomials package. 

6. Request the system information. This includes the name of the compiler used to compile 

the benchmark and the names of the host and target machines of the compiler. This data is 

incorporated into the benchmark driver output to note the environment in which the 

benchmark is being carried out. See "Benchmark Correct Outputs" below. 

7. Request the number of iterations to use for each benchmark. Separate numbers are re- 

quested: one for the number of iterations to use when timing the benchmark, the other for 

(lie iterations to use when collecting data from the benchmark. 

8. Call the instantiated Benchmark procedures. These procedures time the benchmark sub- 

program over a selected domain. They also provide input and output data echoing for the 

benchmark subprogram over the argument domain. 

9. End of benchmark definition. 

Benchmark inputs:  System information and iteration values are supplied at run-time via the con- 

sole. 
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• Benchmark correct outputs: The benchmarks produce time-consumption data as well as: echoed 

system information (noted above), an Ada enumeration literal for the function being benchmarked 

(e.g. SINE_R for radian sine), and ordered pairs of benchmark subprogram input and output. Ac- 

curacy of the subprogram output is determined by an analysis program supplied with the 

Benchmark Suite. This program uses the VAX Ada Math library (MATH_L1B) to obtain truth 

values. Absolute error in a benchmark subprogram is calculated as the difference between the result 

of that subprogram and the truth value result for a given argument.2 

• Data to be recorded: 

1. Execution time for one call to each Ada subprogram benchmark 

2. Code size 

3. Arguments and benchmark function results for those arguments 

4. System information collected at the beginning of the run 

• Methods for recording data: Time-consumption data is recorded and reported automatically by the 

benchmark drivers. Input data, output data, system information echoing, and an enumeration literal 

representing the kind of function benchmarked are also reported automatically. Analyzed output is 

obtained by passing the benchmark driver output through the analysis program Analyze. Code size 

information is retrieved from linker maps. 

TABLE 7. DETAIL OF COSINE PERFORMANCE BENCHMARKS 

Number 
of 

Term* 
Taylor 
Series 

Modified 
Taylor 
Series 

Hastings 
Algorithm 

Hart 
Algorithm 

System 
MHKttOW 

4 

3 

6 

7 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

I X X 

VAX X 

2Note: a small amount of error is induced by conversion lo and from text representations of floating-point number*. 
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TABLE 8. DETAIL OF TANGENT PERFORMANCE BENCHMARKS 

Number 
of 

Terms 
Tsylor 
Series 

Modified 
Taylor 
Series 

Mailings 
Algorithm 

Continued 
Fraction 

System 
Function* 

4 

5 

6 

7 

X X X 
■       - 

—     — 
X 

X 

X 

X X 

X 

X 

1 
9 

10 

II 

VAX 

X X X 

X 

X 

X 

X 

TABLE 9. DETAIL OF ARCSINE PERFORMANCE BENCHMARKS 

Number 
of 

Terms 
Tiylor 
Series 

Fike 
Semicircle 

System 
Function* 

5 X 

6 X X 

7 X 

1 X 

VAX X 

TABLE 10. DETAIL OF ARCCOSINE PERFORMANCE BENCHMARKS 

Number 
of 

Terms 

3 

6 

7 

a 

VAX 

Tsylor 
Series 

X 

X 

X 

X 

Fike 
Semicircle 

System 
Functions 

X       

X 
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TABLE 11. DETAIL OF ARCTANGENT PERFORMANCE BENCHMARKS 

Number 
of 

Terms 
Taylor 
Series 

Alternate 
Taylor 
Series 

Hastings 
Algorithm 

Modified 
Hastings 

Algorithm 
Continued 
Friction 

System 
Fanctions 

4 

5 

6 

7 

« 

9 

10 

It 

VAX 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

X 

X 

X 

X 

TABLE 12. DETAIL OF SQUARE ROOT PERFORMANCE 
BENCHMARKING 

Number 
of 

Terms 

4 

Newton- 
Raphson 

Modified 
Newton- 
Ksphson 

System 
Functions 

5 

6 

7 

VAX 

X X 

X 
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SECTION IV 

METHODOLOGY 

The following paragraphs explain methods used in constructing the Armonics Benchmark Suite. 

These sections discuss the overall design aspects of the suite as applied to the problems of portability, 

validity, and automation of data collection. 

I. PORTABILITY 

Like die CAMP parts in general, the Benchmark Suite is highly portable, extending its usability and 

repeatability to many different Ada systems. The CAMP parts selected as benchmarks use only Mil- 

Std-1815A Ada code, as do the drivers which automate much of the benchmarking. Whenever optional 

Ada features are applied (e.g., pragma PAGE), their effects are irrelevant and they may be freely ignored 

by Ada compilers. 

Input to and output from the benchmarks is limited to die use of the console, obviating file I/O 

implementation in the target system. While a filing system is desirable in order to retain output, the 

console I/O approach possesses greater versatility since many embedded computers (and hosted 

debugger/simulators for the same) may not fully support file I/O. In such cases, the use of file I/O could 

taake the benchmarks difficult to transport to the kinds of architectures for which they are intended. 

Moreover, the use of console I/O does little to impede the retention of benchmark data on a filing system. 

The Ada language and most operating systems supply trivial mechanisms for redirecting console output 

to files. 

The tool set which accompanies the benchmark suite is system-dependent and, as previously noted, 

consists of VAX DCL command procedures and some non-portable Ada. Designed to automate the com- 

pilation and execution of the benchmarks, this tool set supports two possible uses: For VAX/VMS users, 

the tool set substantially automates benchmarking; for users of other systems, the tools are well 

documented to permit a knowledgeable user to modify diem or use them as a guide for performing the 

benchmarks on his own system. A more detailed treatment of the tools is presented in Section V. 

In order to automate the timing of benchmark executions in a portable way, the benchmark drivers 

use facilities from the Ada CALENDAR package. Although differences in the implementation of this 
package may exist between systems, these differences are minor enough that their effects can be min- 

imized. The design of the benchmark drivers attempts to lake advantage of similarities in Ada systems 

supporting the CALENDAR package, while accounting for the differences that exist. 
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For example, the duration of a basic clock cycle (Ada SYSTEM.TICK) may vary from system to 

system and may be quite large with respect to the benchmark execution times. This requires a benchmark 

driver to execute its benchmark many times in order to arrive at a reasonable one-call execution-time 

estimate. By examining the Ada constant SYSTEM.TICK, the drivers are able to calculate the number of 

benchmark executions necessary to arrive at a set timing accuracy. Conversely, given the number of 

executions used in benchmarking, the drivers calculate an estimated accuracy on the time-consumption 

data obtained from those executions. 

2. COMPILATION BENCHMARK METHODS 

The compilation benchmarks are valid tests of a compiler but do not apply to code generation. They 

are intended to force an Ada compiler/linker system to fail when it contains errors in semantic analysis, in 

library management, or in linkage editing. 

To pass the compilation benchmark test, a compiler must process the associated Ada source code 

without signaling any errors or ending abnormally. Limited warnings are allowed since the Ada language 

allows a compiler some flexibility. For example, a compiler can warn that it has made an optimization or 

ignored an optional pragma. Warnings about program semantics, however, should not be generated, nor 
should the compiler or linker encounter fatal errors in library management or load module generation. 

The compilation benchmarks are performed by a DCL command procedure. This procedure must be 

supplied with a compiler invocation command and a linker invocation command. It then proceeds to 

apply these commands to the necessary Ada source files in a correct order. The procedure can be altered 

or used as a guide when benchmarking on systems other than VAX/VMS. 

The compilation benchmarks were validated by successfully compiling, linking, and running their 

source code on a higldy reliable Ada compiler/linker system. The system on which the validation was 

performed is ACVC validated and produced no error messages or warnings in the course of compiling, 

linking, and running the compilation benchmark source code. 

3. EXECUTION BENCHMARK METHODS 

a. Collecting Valid Timing Data 

Drivers of the execution benchmarks collect time-consumption data through the use of the Ada 

CALENDAR package. As noted above, the Ada constant SYSTEM.TICK varies between systems and is 

usually quite large. Because of this the benchmarks are called repeatedly for the sake of timing accuracy. 

The number of repetitions necessary to achieve microsecond accuracy is computed relative to 

SYSTEM.TICK and reported by the benchmark drivers at run-time. This enables a user of the 

Benchmark Suite to decide on the number of repetitions to actually use in benchmarking. 

The computed number of repetitions is not used automatically since the resulting processing 

time of the benchmark drivers might, in some cases, become prohibitively long. Large numbers of 

repetitions on slow systems may consume a substantial amount of CPU time. Reducing the number of 

repetitions proportionally reduces both the driver CPU-lime expense and, unfortunately, the accuracy of 
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the collected benchmark timings. The engineer who runs the benchmarks must, therefore, make a trade- 

off with respect to timing accuracy and the use (or overuse) of computational resources. 

In order to ensure valid timings of the benchmarks, a number of precautions are built into the 
system. Code optimizations which might affect the integrity of the time-consumption data are selectively 

defeated while other optimizations remain untouched. The methods used are similar to those used in 

ACVC tests to prevent the compile Jme removal of code which is being tested. These methods entail the 

use of identity functions and tautological BOOLEAN functions to deprive the compiler of optimization 
opportunities. Here, the goal of optimization suppression is essentially to "fool" the compiler by reducing 

its available control-flow information at compile time. 

For example, consider Figure 4. The identity function used in the first part of this Ada fragment 

prevents a compiler from propagating the constant "5" into the timing loop in place of the variable 

Argument. If this propagation were allowed to occur, the measured lime for the subprogram call could be 

reduced. The reduction, however would be due to the static nature of the argument, a circumstance which 

would not often occur if the subprogram were used in an application. This method of optimization 

suppression is used in the integrated execution benchmarks where constants are often supplied as ar- 

guments. 

m Xdmtitr(S);     —  lnatMd of  -*i p—it   :- 5; 
8t«rt_TlJMr; 
Cor Indue in Soa*_Rang« loop 

Raault   :- B«nch»ark_runctlon   (ArgoHBt) ; 
•ad loop; 
3top_Tla»r; 

Figure 4.   Identity Function Defeats Constant Propagation 

In a second example. Figure 5 shows the use of a tautological BOOLEAN function to prevent 

the removal of a "dead" assignment. The function, Snow_Is_White, always returns the value TRUE, 

although this is not known at compile time by the compiler (the body of the function is separate). Since 

the flow of control is not known, the compiler cannot remove the assignment to the variable Gross_Time. 

If this optimization were allowed, the compiler could move the evaluation of the Get_Elapsed_Time_ 

Since_Start function into the expression assigned to the variable Next_Time_Used. While such a move 

would not alter the logical meaning of the program, a small effect on the time data would result. This 

optimization suppression is used in the polynomial benchmarks. 

It should be noted that these techniques <lo not have the negative effect of inhibiting desired 

optimizations. An Ada compiler is free to optimize all unprotected source code, including the code 

bodies of the benchmarks themselves. It should also he noted, however, that these techniques arc not 

fool-proof. Conceivably, a smart enough compiler/linker could outwit the optimization suppressions 

described here. 
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»tart_Timar; 
for  Indajc  In   So«M_R*ng*   loop 

■ rgi—ant   :-  Identity   (Argument), 
•nd  loop; 
If   Snowl.  Hhlt*  than 

Or«rh«*d_Tl»»   :- Oat_Elapaad_Ti»a_Sinaa_Start 
•nd  If; 

loop d«t»n*in»» o»«rh»id 

— b»l*nc»» "if" b.lo». 

for Indox In Son»_It»ng« loop 
>lf l»t :- Identity (llfiawnt) ; 
•aault   :- Bannhaark_l*nnotIon (Argumnt); 

•nd loop, 
if 3now_Ia_l»hitn than 

SroaaTlaa :- Gat_Elapaad_Tl»a_Sinca_Staxt; 
•nd if ; 
■at Tin— Oaad :- Groaa Tlaa - Ovarhaad Tiaa; 

— function alwaya TROT 
— raaoral prarantad 

Figure 5.  Tautological Function Prevents Assignment Removal 

Figure 5 also illustrates the collection of time-overhead to calibrate benchmark timings. Time 

overheads are calculated at run-time and are used to offset the effects of the timing method and 

benchmark code idiosyncracies. In the case of the polynomial benchmarks, the overheads are often 

negligible, since none of these benchmarks require initialization. 

On the other hand, the execution time overheads of the integrated execution benchmarks are 

usually appreciable due to the parameter requirements of the benchmark subprograms. Many of the 

higher-order CAMP parts used as integrated execution benchmarks have side effects and in-out 

parameters. Each execution of such a benchmark, therefore, has a cumulative effect which may produce 

an exception after many iterations. In order to counteract this effect, many of the integrated execution 

benchmarks must be re-initialized prior to each call, a process which adds very significantly to overhead. 

The resolution of this problem is transparent to the user and is accomplished by, as in the polynomial 

benchmarks, implementing automatic overhead correction in the benchmark drivers. 

Despite all of the precautions taken to ensure the validity of the time-consumption data, in- 

accuracies may still occur. The benchmark drivers may overestimate benchmark execution times when 

asynchronous events take place in the midst of timing. For example, if the benchmark drivers are 

operated on a lime-sharing operating system, Ihey will compete with other processes. Since the CALEN- 

DAR package operates on wall-clock time rather than CPU time consumption, the benchmarks will ap- 

pear to execute longer as their CPU time fraction is reduced. 

25 



Problems of this kind are beyond the control of the benchmark drivers. The effects of 
asynchronous events on the benchmark timings may be minimized, but inaccuracies should nevertheless 

6e assumed: When asynchronous interference with the benchmarks is relatively uniform, the benchmark 

execution times wil< lengthen proportionally to their synchronous execution times. Benchmarks which, by 

themselves, take a relatively long time to run will, of course, show a relatively larger dilation in measured 

execution time. While this effect may be undesirable, it can usually be taken into account. 

Moreover, timings which include asynchronous interference, typical of an operating environ- 

ment, are quite valid. In such an environment, estimates based on the CPU time consumption alone 

would be unrealistically low. The true throughput of an application is a function of both the application 

execution speed and the typical amount of asynchronous interference with which the application must 

contend. 

b. Collecting Benchmark Output Data 

In addition to timing data, the polynomial benchmarks provide data for use in determining the 

accuracy of Polynomials (CAMP package) function results. For each function benchmarked, both input 

and output are reported at equal intervals over a selected argument domain. This permits the result ac- 
curacies of the functions to be checked against appropriate truth values. For users with access to VAX 

Ada, accuracy analysis and report generation can be accomplished automatically using a tool provided 

with the Benchmark Suite. Other users may make use of this tool by modifying it as explained in section 

V. It should be noted, however, that the accuracy analysis tool is not required in order to run the 

benchmarks. 

Armonics subsystem output data is also produced by the integrated execution benchmarks al- 

though automatic checking of this data is not supported. Most of the output from these benchmarks is 

produced in an ad hoc format which does not lend itself to automatic analysis. Nevertheless, the correct- 

ness of the data may be checked by manual comparison with standard output files supplied with the 

Benchmark Suite. 

c. Automation of the Execution Benchmarks 

The compilation and implementation of the execution benchmarks is highly automated in the 

Armonics Benchmark Suite. Depending on the computer system used, most of the benchmarking, from 

installation to report generation, may be accomplished in one or two man-days. In addition, once an 

engineer has conformed the Benchmark Suite to run on n particular system, the work can be easily 

repeated as necessary. 

Compilation of the source code of the execution benchmarks is explained in detail in the next 

section. The process involves the use of VAX/VMS command procedures as discussed above for the 

compilation benchmarks. Once again, these command procedures may be used directly on a VAX, 

modified on systems which support batch processing, or used as a guide on other systems. 

The process of running the benchmarks is automated at two levels. First, the benchmarks them- 

selves (i.e. the chosen CAMP parts) are automatically executed by the portable Ada drivers in which they 
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are embedded. Thus, the engineer with the task of benchmarking is not required to supply an Ada driver 

with which to execute the benchmarks. Second, at a higher level, the benchmark drivers are executed 

using VAX DCL command procedures, written for inclusion with the Benchmark Suite. This level of 

automation is, of course, subject to system dependencies. 
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SECTION V 

USING THE BENCHMARKS 

The following sections explain how to perform benchmarking using the CAMP Armonics 

Benchmark Suite. For the purposes of discussion, the VAX/VMS environment is assumed. Comments 

throughout suggest possible ways of adapting the Benchmark Suite to other environments. 

Table 13 lists the DCL command procedure files which are supplied with the Benchmark Suite. On 

a VAX, these command procedures automate both the compilation and the execution of the benchmark 

drivers. On other systems the command procedures serve as a guide although they may be altered as 

necessary to conform to other batch-processing systems. 

1. LOGICAL DIRECTORIES 

A system of three directories is recommended for compiling and executing the benchmark code in a 

VAX/VMS environment. These directories are referred to within the Benchmark Suite command 

procedures by the following VMS logical names: 

• Compilation_Directory: The directory on which all compilation takes place. 

• Tools: The directory which contains the Benchmark Suite command procedures, and 

• Source: The directory which contains all of the Ada source code supplied with the benchmarks. 

On systems which do not support the concept of logical names, the command procedures may be 

altered to use the desired operating system names and batch job control style. Systems which do not 

support the concept of directories at all may store all of the files (over 360 in number) in a single location 

and alter the command procedures accordingly. 

2. USINO THE COMPILATION BENCHMARKS 

The compilation benchmarks are simply files of Ada source code. Testing a compiler/linker system 

with the benchmarks involves compiling the Ada code in a correct order and then linking the three 

linkable main procedures. For VAX/VMS-hosted Ada compilers the process is automatic depending 

slightly on the command syntax used to invoke the subject Ada compiler and linker. 

The file called VAX_Compilation_Run.Com gives an example of how to perform the compilation 

and linkage editing of the compilation benchmarks on VAX/VMS, using the VAX Ada compiler and (via 

ACS) the VMS linker. The procedure sets its process to run in the logical CompiIation_Directory and 
then calls the command procedure Compilation_Bcnchmarks to perform the compilation and the linkage 

editing. On other systems, the Compilation_Bcnchmarks procedure gives a correct compilation order for 

the Ada source files and may be used as a guide or altered as necessary. 
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TABLE 13. BENCHMARK SUITE COMMAND PROCEDURES 

COMMAND PROCEDURE PURPOSE 

ACI.COMPILAl ION_RUN Calk Compilalinn_BciK.hmarka lo compile/link Ihe compilation benchmarks on the ACT 
compiler. 

ANSI2DV A DV2ANSI Rename files from ANSI lo development names and reverse. 

COMPILATION_BENCHMARKS Compiles/links source code for the compilation benchmarks. 

COMPILE_BENCHMARK_SUPPORT Compiles support code for the execution benchmarks. 

COMP1LE_TOOLS Compiles the clock function and I/O tools of the execution benchmarks. 

INT.EXEC l_COM_LINK Compiles/links Ada source code for integrated execution 1 

INT_EXEC2_COM_LINK Compiles/links Ada source code for integrated execution 2 

INT_EXEC.1_COM_!.INK Compiles/links Ada source code for integrated execution 3 

MODIFIED_POLY6_COM_!.INK Compiles/links Ihe 6-digii precision polynomial benchmarks on the TLD compiler. 

MODlFIED_POLY9_CX>M_LlNK Compiles/links the 9-digit precision polynomial benchmarks on the TLD compiler. 

POLYo_COM_LINK Compiles/links the 6-digil precision polynomial benchmarks. 

POLY9_COM_MNK Compiles/links the ')-digit precision polynomial benchmarks. 

SYSTEM_COM_LINK Compiles/links code to run the System polynomial benchmark. 

TLD_BENCHMARKS_COM_UNK Calls other procedures to compile/link the benchmarks on the TLD compiler. 

TLD_CT)MPILATK)N_RtJN Calls Compilation_Benchmarks to compile/link the compilation benchmarks on Ihe TLD 
compiler 

VAX_ANALYZE_COM_LINK Compiles/links the Analyze Ada program. The program js VAX/VMS and VAX Ada 
dependent. 

VAX_ANALYZE_POLY Uses Analyze Ada to analyze all of the output from the polynomial benchmarks 

VAX_BENCHMARKS_COM_LrNK Calls other procedures to compile/link Ihe benchmarks on the VAX Ada compiler. 

VAX_COMPlLAT!ON_RUN Calls Compilalion_Benchmarks to compile/link the compilation benchmarks on the VAX 
Ada compiler. 

VAX_INT_EXF.C1_RUN Runs integrated execution 1 on the VAX. 

VAX_INT_EXEC2_RUN Runs integrated execution 2 on the VAX. 

VAX_INT_EXEC3_RUN Runs integrated execution 3 on the VAX. 

VAX_POLY_Rl»N                                        | Runs Ihe polynomial benchmarks on the VAX. 
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X COMPILING THE POLYNOMIAL AND INTEGRATED EXECUTION 
BENCHMARKS 

The two classes of executable benchmarks in the Armonics Benchmark Suite must be compiled and 
linked prior to benchmarking. On VAX/VMS, this process is automatic and is accomplished by the 
VAX_Benchmarks_Com Link command procedure provided with the Benchmark Suite. This command 
procedure establishes a process in the logical Compilation_Directory and then proceeds to call other 
Benchmark Suite command procedures to accomplish the various compilation and linkage editing tasks. 
The following command procedures are performed in order: 

l.Compile_Benchmark_Support: compiles the CAMP and 11th Missile software used in 

benchmarking. This software contains the actual benchmarks (i.e., the CAMP parts selected as 

benchmarks) as well as necessary support code. After compilation, this software comprises a 

library of Ada units which provide a context for the subsequent compilation of the benchmark 

drivers. 

2. CompileJTools: compiles packages of benchmarking tools used by the drivers. These packages 

are fully portable and provide the drivers with necessary I/O routines and other utilities. 

3. VAX_Analyze_Com_Link: compiles and links the tool, Analyze, used to analyze the output of 

the polynomial benchmarks. This tool is dependent on VMS and VAX Ada as explained in 

Section III. The Benchmark Suite program library dependency of this tool is limited to the pack- 

age Benchmarking_Tools, compiled by the procedure, CompileJTools, just discussed. This means 

that the analysis tool may be independently compiled on VAX/VMS and VAX Ada and then used 

to check the polynomial benchmark output from other systems. 

4. Poly6_Com_Link and Poly9 Com, Link: compile and link the polynomial benchmark drivers. 

Two command procedures are used: one for the drivers using 6-digit Ada floating point numbers, 

and one for the drivers using 9-digit numbers. Thus, Ada systems which do not support the 

extended floating-point representations may still compile the lower-accuracy drivers without dif- 

ficulty. It should be noted, however, that the Ada source code files of Poly9_Com_Link will not 

correctly compile unless those of Poly6_Com_Link have already been compiled. Two packages 

necessary to the polynomial benchmark drivers of both precisions are compiled in Poly6_Com_ 

Link. 

5. Inl_Execl_Com_Link, lnt_Exec2_Com_Link. and lni_Exec3_Com_Link: compile and link the 

integrated execution benchmarks. Each of these command procedures compiles the support and 

drivers necessary to run the respective integrated execution benchmarks. 
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6. Systcm_Com Link: recompiles CAMP Polynomials support on Hie VAX then compiles and links 

the System Driver benchmarks. This driver uses the VAX Ada math library as a set of 

benchmarks. The Polynomials Syslem_Functions LLCSC interfaces this driver to the math 

library. This can be of interest to users of VAX/VMS and VAX Ada who must use the VAX Ada 

"slide rule" functions, but who have to meet real-time constraints. 

4. RUNNING THE EXECUTION BENCHMARKS 

a. Polynomial Benchmark Execution 

Once compiled and linked, the polynomial benchmark drivers may be run to produce data. As 

has been discussed, these drivers send output to standard output which is generally the console. On most 

systems supporting file I/O, including VMS, the standard output can be redirected to files. 

The command procedure V AX_Poly Run is an example of running the polynomial benchmarks 

in the VMS environment. Standard input is redefined to permit the drivers to request their input from a 

file. This file, created automatically by VAX_Poly_Run at benchmark time, contains data to supply the 

benchmark drivers with the following: 

• Compiler Name: the name of the compiler used to compile the polynomial drivers (becomes part of 

the output data). 

• Host Name: the name of the compiler host machine (becomes part of the output data). 

• Target Name: the name of the target machine of the compiler and the machine on which the 

benchmarks will run (becomes part of the output data). 

• Number of timing iterations: the number of times that a driver must call a function in order to 

achieve a certain accuracy in calculating the lime for a single call. 

• Number of data iterations: the number of data values to use as arguments to a function of the 

driver. This defines the number of argument-result pairs produced as output for each benchmark of 

the driver. 

Standard output, like standard input, is also redefined in the case of each benchmark driver to 

channel output to files. This permits the subsequent analysis of the output by the analysis program 

Analyze. 

The analysis program is not portable from the VMS and VAX Ada environment due to use of 

the VAX Math Lib. Thus, use of the program on other systems is prohibited unless modifications are 

made. The program may. however, be modified by interfacing it to another math library, as long as the 

output from new math library has greater than nine Ada digits of precision. This is necessary since the 

math library is used by the analysis program lo check the results of the polynomial benchmarks, which 

use up to nine digits of accuracy. 

Running the analysis program is trivial and is demonstrated by the VAX_Analyze_Poly com- 
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procedure. A user simply executes the analysis program. Analyze, and provides it with the name of 

a data file produced by running the polynomial benchmark drivers. The program prompts again to re- 

quest the name of the file in which the analyzed output is to be placed. After the analysis of a file is 

complete the program starts over, requesting the name of the next input file. If no file name is provided, 

the program terminates. 

It should be noted that, although the analysis program is non-portable, it may be used to analyze 

polynomial benchmark data from diverse systems. A user with access to VAX/VMS and VAX Ada may 

Me the analysts program exclusively on that system to check the benchmark output from many other 

systems. 

b. Integrated Execution Benchmarks 

Running the integrated execution benchmarks is similar to running the polynomial benchmarks. 
The command procedures VAX_Int_Execl_Run. VAX_lnt_Exec2_Run, and VAX_Inl_Exec3_Run 

automatically execute the three integrated execution benchmark groups on VMS. These procedures 

provide the input data required by die drivers while the output of the drivers is trapped in log files by 

VMS. 

Like the polynomial benchmark drivers, the integrated execution benchmark drivers use only 

standard I/O. The input data required by each of the drivers is as follows: 

• Compiler Name: the name of the compiler used to compile the polynomial drivers (becomes part of 

the output data). 

• Host Name: the name of the compiler host machine (becomes part of the output data). 

• Target Name: the name of the target machine of the compiler and the machine on which the 

benchmarks will run (becomes part of the output data). 

• Numbers of Timing Iterations: a series of numbers telling the driver bow many times to execute 

corresponding benchmarks. Unlike the polynomial benchmarks, the different integrated execution 

benchmarks within a driver do not all have to be executed the same number of times. Also, 

overhead liming iterations vary from benchmark to benchmark. The command procedures which 

run the integrated execution benchmarks on VAX/VMS may be consulted for more details. 

The output generated by running the integrated execution benchmarks consists of two types of 

1. Result data, which represents the results of ihe calculations performed by the subprograms chosen 

as benchmarks and. 

2. A table of timing data showing the time used (or a single call (o each benchmark subprogram. 
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Oulpul data of the first type is to be used in checking the correctness of the data processing of a 
tested system. Such output should closely match the corresponding standard data supplied with the 

Benchmark Suite. The second type of data represents the run-time efficiency of the tested system and is 
expected to vary widely from system to system. 

Although both kinds of data are produced with each run of an integrated execution benchmark 

driver, the correctness of the two types is mutually exclusive in a given run. A run which provides 

accurate run-time efficiency data is, by design, likely to produce poor data for correctness checking. The 

reverse is also true. For this reason, each integrated execution benchmark must be run twice, once for 

timing purposes and once to obtain data for comparison to supplied standard data. 

When performing the timing run, the number of iterations for each benchmark subprogram 

(specified by the user at run-time) must be high in order to compensate for the generally low accuracy of 

the clock functions. Each subprogram will then be called many times, the time for one call being cal- 

culated by simple division. To aid the user, each benchmark driver reports the number of iterations 

necessary to obtain microsecond accuracy. Also, whatever number the user specifies, Hie resultant table 
of timings will show estimates of the accuracy actually obtained. 

On the other hand, performing the benchmark run for correctness of data processing requires 

that the benchmark subprograms be executed only once. Thus, the user must specify that only one itera- 

tion be used for each subprogram. More than one call to a given subprogram can alter the output data, 

making any comparison to the standard invalid. This is due to the use of in-out parameters and occasional 

side effects in the benchmark subprograms. Results, in these cases, tend to accumulate changes from call 
to call as previously discussed. 
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APPENDIX A 

ARMONICS BENCHMARK SUITE 

This appendix presents a summary of (he data which CAMP obtained from the Armonics 

Benchmark Suite. In some cases the data represents performance parameters of the selected CAMP parts 

as they operate on a 32-bit minicomputer. However, when possible, data reflecting the operation of the 

benchmarks in a Mil-Std-1750A microprocessor environment has been included. 

The compilation benchmark data underscores some of the difficulties a software engineer may 

experience when selecting or applying an Ada compiler. It was found that many validated Ada compilers 

currently lack the ability to handle complex source code. The problem is essentially one of relative 

reliability: Some Ada compilers seem to work all of the time; most Ada compilers seem to work some of 
the time. 

The polynomial benchmarks, which measure run-time parameters of Polynomials scientific 

functions, were executed successfully in both the 32-bit minicomputer and 1750A microprocessor en- 

vironments. This supplied us with data enabling us to draw some useful conclusions about the CAMP 

parts, the Ada language, and the tested compiler/processor pairs. Finally, performance data from the 
integrated execution benchmarks serves to validate these benchmarks. At the time of this writing these 

benchmarks could not be run in any but the 32-bit environment due to errors in compilation to the 1750A 
target machine. 

I. COMPILATION BENCHMARK DATA 

The compilation benchmarks were used to test four separate Ada Compiler/Linker systems. One 

compiler. Compiler A, was self-targeted and served, because of its demonstrated reliability, as the valida- 

tion compiler for (he benchmarks. The other three compilers, B, C, and D, were recently validated 

cross-compilers to a 1750A target. 

Compiler A succeeded in compiling all of the source code of the compilation benchmarks. It 

produced no warnings and no errors. The accompanying linker subsequently produced load modules with 

no difficulties. As a final step, the load modules were run on the host system to see if they would produce 

run-time errors. On this host, no errors occurred although this implies no guarantees about other systems. 

Compiler B succeeded in compiling all of the source code correctly except the driver of the Kalman 

filter compilation benchmark, Compilation 3. Numerous warnings were issued in the course of compila- 

tion. The vast majority of these warnings concerned optimizations which could have been made in the 

Ada code but, for reasons of readability, were not. The compiler had performed an optimization that was 

not made by the programmer at the source code level. The warnings produced by Compiler B were 

justified with the exception of two concerning program semantics. 

In compiling the Kalman filter driver. Compiler B evidently lost track of a necessary file. Object 

code was still generated but it was probably erroneous. Nevertheless, all three drivers were successfully 

linked, albeit with one warning. The linker of Compiler B produced the required load modules and did 
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not fail lo note thai Jie Kalman filter driver had compiled with errors.  The load modules were next 
loaded into the MDAC-Huntington Beach Mil-Std-1750A Simulator and their sizes were recorded. 

Compiler C compiled all of the support packages of the compilation benchmarks but failed to com- 
pile any of the three drivers. In all three cases, the compiler ended abnormally in a late phase of process- 
ing. For this reason. Compiler C's linker could not be fairly tested. 

Compiler D had been validated very recently and appeared to be having many of the problems 
associated with any new compiler. It failed to compile even the support packages of the compilation 
benchmarks. After successfully compiling the first three Ada files, the compiler falsely diagnosed the 
fourth as having semantic errors. Continuing through the source code, the compiler found numerous 
other "errors" in the error-free code. 

A summary of the data collected on Compilers A, B, and C is presented in Table A-l. Insufficient 
data was obtained from Compiler D to justify its inclusion in the (able. It should be noted that the object 
code size data for Compiler A may be unrealistically small. Hie size mentioned in the table does not 
include any run-time system services which may be required. 

TABLE A-l. COMPILATION BENCHMARK DATA 

COMPILER/ 
LINKER 

A 

B 

C 

SUCCESSFUL 
COMPILE? 

Yes 

MM 

SUCCESSFUL 
LINK? 

Yes 

Yes 

TOTAL CPU 
TIME (sees.) 

10:56.56 

22:42.33 

TOTAL OBJECT 
CODE SEE 

62K bytes 

I22K bytes 

No NA 3OO0.0O? 7 

2. POLYNOMIAL BENCHMARK DATA 

The polynomial benchmarks were used to test two subject systems. System A consisted of Compiler 
A, above, and the host/target system of that compiler. System B consisted of Compiler B and the MDAC 
Huntington Beach Mil-Sid-1750 A simulator, which simulates a 17S0A bare machine. Running the 
benchmarks on System A produced performance data on the CAMP Polynomials package parts as they 
run on a 32-bit time-sharing minicomputer. System B produced data for the same parts as they run on a 
20 MHz 1750A microprocessor. Compilers C and D, above, failed to compile the polynomial 
benchmarks. 

For each function of the Polynomials package, size data was obtained on System B. It was felt that 
17S0A size data was relevant to armonics applications. Moreover, this data was readily available in the 
linkage map files produced by the linker of System B. On the other hand, size data on the 32-bit system 
was less meaningful and was excluded. System A makes extensive use of built-in service routines which 
are not counted in load size; on a bare machine, system services arc part of the load module or run-lime 
system and are counted — a fact which casts douhf on (he validity of code size estimates. Table A-2 gives 
the size data for functions of the Polynomials package on System B. 

Time-consumption and mathematical precision data on the polynomial functions was collected for 
both systems A and B. This data is summarized in Figures A-l to A-12. Each graph plots the execution 
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TABLE A-2. SYSTEM B POLYNOMIALS SIZES 

TLCSC Nam TLCSC Naae TLCSC Name 
ursc Naae Size (words) LLCSC Name Size (words) LLCSC Name                            Six* (words) 

"nit Name Hex. Dec. Unit Naae Hex. Dec. Unit Naae                              Hex      Dec. 

Chebyshev Hod Newton Raphson Taylor Series   Icont.) 
Radian derations "Sgrt 61 97 Degree Operations 

Sln_R_5Tera 5D 93 Newton Raphson Sin 6 5Tera                          8 C     140 
Degree Operations Sgrt 6C 101 Sln~D~STera                          4 C       76 

Sin D Herat 5D 93 Taylor Series Sln_D~7T»ra                          5 0       80 
Semicircle Operations RadlanOperat Ions Sln_D_8T»ra                        9 4        84 

Sin S 5tera 5A 90 Sin R 4Term 34 52 Coi~D~ST»ra                          9 D      157 
CodyWalte Sln_R_5Ter» 37 55 Cos_D~*T«ra                        5 3       13 

Natural Log SlnjC6Tera 3A 58 Coa~D~7T«ra                          5 (       16 
Nat Log 59 89 Sln~R~7Term 3D 61 Coa~D~8T*ra                        5 9       19 

Base S sin R STera 40 64 Tan D Worm                          1 «       54 
Log N 12 18 Cos R 4Tera 4F 79 Mod Sin D 4Term                    7 (    lie 

Continued Fractions Cos R 5Term 52 62 Hod Sin D 5T*ra                  7 E     126 
Radian Operations Cos R 6Tera 55 85 Mod Sin D 6T*ra                  8 i     134 

Tan f 31 49 Cos_R_7Tera 58 88 Hod Sin D 7T*ra                  8 I     142 
Arctan R 3« 54 Cos R 8Tera 5B 91 Hrxfsln D 8T«ra                  9 «     150 

FUe TanRSTera 2B 43 HCHfcoa 0' 4Tera                  7 4      11< 
Semicircle Operations Arcsln R 5Term 22 34 Hod~Cos_D~5T«ra                  7 C     124 

Arcsln S 4Term 60 96 Arcsln R 6Term 26 38 Hod~Coa~D~6T«ra                  8 4      132 
Arcsln S 5 Term 64 100 Arcsln R_7Term 2A 42 Hod CoaD" 7T«ra                  8 C      140 
Arcsln~S 6Tera 68 104 ArcslnR 8Tera 2E 46 Hod Cos~D~8T«ra                  9 4      148 
Arccos S 4Tera 62 98 ArcosiI 5"Term 29 41 Hod Tan D 4Tera                  1 4        2f 
ArccosS 5Tera 66 102 Arcos_R^6Term 2D 45 Hod'TanD 5Tera                  1 4       20 
ArccosS 6Tera 6A 106 Arcos R 7T»ra 31 49 Hod Tan~D~6Tera                  I 4       2D 

Hart Arcos R~8Tera 35 53 Hod"T«n"D 7T*ra                  1 4       20 
Radian Operations Arctan R 4Term 31 49 Mod Tan D ITera                  1 4        20      ' 

Cos R 5Term 52 82 Arctan R 5Term 35 53 
Degree Operations Arctan R 6Tera 39 57 

Cos D 5T»ra 51 81 Arctan R 7Tera 3D 61 
Hastings Arctan R~8Term 41 65 

Radian Operations Alt ArctanR 4Term IE 30 
Sin R 4Teri» 36 54 Alt_Arctan_R_5TBra 22 34 
Sin R 5Term 3A 58 Alt~Arctan R 6Tera 26 38 
Cos R 4Term 3D 61 Alt_Arctan_R_7Ter» 2A 42 
Cos R 5Term 41 65 Alt~Arctan R 8Tera 2E 46 
Tan P 4Term 25 37 Hod Sin _R_4Term 68 107 
Tan P 5Term 25 37 ModSlnR 5Term 73 115 
ArctanP 6Term 26 38 Hod Sin R^Term 7B 123 
Arctan R 7Tera 2A 42 Hod Sin R 7Term 83 131 
Arctan R BTern 2E 46 Hod_Sln_R_8T*rm SB 139 
Hod Arctan R 6Term 4C 76 Hod~Cos R 4Term 76 118 
Hod Arctan R 7Term 50 80 Hod Cos R 5Tera 7E 126 
Mod Arctan R 9Tera 54 84 Hod Cos R_6Term 86 134 

Degree Operations Hod Cos R 7Term 8E 142 
sin D 4 Term 36 54 Hod Cos R 8Tera 96 150 
Sin DSTerm 3A 58 ModTan R_4Tera 14 20 
CosD 4Tera 3D 61 Hod Tan_R~5Tera 14 20 
Cos D~5Ter» 41 65 Hod Tan R_6Term 14 20 
Tan D 4Tera 23 35 Hod Tan RJ7Tera 14 20 
Tan D_5Term 23 35 HodJTan_R~8Term 14 20 

time of a function against the absolute precision of that function's results.  Both the time and precision 

data are taken over the function argument domains listed at the bottom of each figure. 

The domain specifications are of particular importance since a given function, apparently superior in 

terms of performance, may nevertheless operate correctly only over a small domain. This is, for example, 

true in the case of the radian arctangent benchmarks (Figures A-6 and A-12) where the "Alt Taylor" 

method appears to be the best performer. However, referring to the domain specification, it becomes 

apparent that the "Alt Taylor" method only provides the indicated performance over the domain (0.0,0.4|. 

Other functions provide a more acceptable domain at a slightly higher throughput cost. 

The absence of separate data for six and nine digit instantiations in the figures based on System B is 

due to the fact that compiler B always uses 1750A extended precision (approximately 9 decimal digits) to 

represent any generic floating-point object.   Identical object code is used for each instantiation of a 
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floating-point subprogram and, indeed, compiler B shares one object code instruction section 

among all instantiations of a given generic. The use of this "single copy" method implies that the running 

times of different instantiations of the same generic subprogram will be identical, regardless of the preci- 

sion of the floating-point variables. Thus, the nine-digit worst case data applies for both six and nine- 
digit instantiations. 

3. INTEGRATED EXECUTION BENCHMARK DATA 

The integrated execution benchmarks, which integrate numerous CAMP parts, were run on the 32- 

bit minicomputer (System A above. Tables A-3, A-4, and A-S). 

Standard output data for these benchmarks is supplied in the form of files accompanying the 

benchmark suite. This data can be used to verify that a compiler and target machine combination produce 

correct output for the benchmarks. The data is not reproduced here because it is quite lengthy and is not 

formatted for inclusion in a document. 

Time-consumption data on the integrated execution benchmarks was automatically collected at run- 

time by the benchmark drivers. This data is presented in Tables A-3, A-4, and A-5. 
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TABLE A-3. TIMING OF INTEGRATED EXECUTION 1 

Integrated Execution 1 on VAX 

TLCSC Name     (some names abbreviated) 
LLCSC Name 

Unit Name 

Time (microsecs) 

Per Call Variation 

Waypoint Steering (P661) 
Compute_Turn_Angle_And_Direction 
Compute Turning And Nonturning Dist 
Distance To_Current_Waypoint 

Steering Vector Operations W Arcsin 
Initialize 
Update 

Turn_Test_Operations 
Stop_Test 
Start_Test 

Signal_Processing (P686) 
Absolute Limiter 

Limit 

Opper_Lower_Limiter 
Opdate_Limits 
Limits 

391.0 
173.0 
409.0 

5210.0 
2623.0 

62.0 
61.0 

43.0 

15.0 
57.0 

0 
0 
0 

5 
10 

2 
0 

0 

0 
0 
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TABLE A-4. TIMING OF INTEGRATED EXECUTION 2 

Integrated Execution 2 on VAX 

TLCSC Name     (some names abbreviated) 
LLCSC Name 

Time (microsecs) 

Unit Name Per Call Variation 

Common Navigation_Parts (P001) 
Update Velocity 

Reinitialize 34.0 2 
Current Velocity 51.0 2 
Update 

Compute Ground Velocity 509.0 2 
Compute Gravitational Accel Sin Lat In 332.0 2 

Wander Azimuth Navigation Parts (P002) 
Earth Rotation_Rate 

Compute 338.0 2 
Earth Relative Navigation Rotat Rates 

Compute 414.0 0 
Total Platform Rotation Rate 151.0 0 
Compute Latitude Using Two Val_Arctan 623.0 0 
Compute Longitude Using Two Val_Arctan 430.0 0 
Compute East_Velocity With Sin_Cos 231.0 2 
Compute North_Velocity With Sin_Cos 232.0 2 
Compute Coriolis Acceleration 769.0 2 
Compute Wand Azim Angle Two Val Arctan 432.0 0 
Compute Curvatures 820.0 0 

Direction Cosine Matrix {P644) 
CNE Operations 

Compute First Row CNE From Ortho 199.0 0 
CNE Initialized From Reference 1647.0 2 
Perform_Rect Integration_Of_CNE 664.0 0 
Reorthonormalize CNE 1698.0 2 
Aligned CNE Matrix 1178.0 2 

General_Vector_Matrix_Algebra (P682) 
Matrix Matrix Multiply Restricted 3861.0 0 

General Purpose_Math_Parts (P687) 
Accumulator 

Accumulate 19.0 2 
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TABLE A-5. TIMING OF INTEGRATED EXECUTION 3 

Integrated Execution 3 on VAX 

TLCSC Name     (some names abbreviated) Time (microsecs) 
LLCSC Name 

Dnit Name Per Call Variation 

Kalman Filter Common Parts (P651) 
State Transition And Proc_Noise_Mat_Mgr 

Initialize 1603.0 1 
Propagate 187290.0 10 
Get Current 113.0 1 
Propagated_Phi 119.0 1 

Error Covariance Matrix Manager 
Initialize 69.0 1 
Propagate 149540.0 10 
P 119.0 1 

State_Transition_Matrix_Manager 
Initialize 1547.0 1 
Propagated Phi 117.0 1 
Propagate 28073.0 10 

Kalman Filter Compact H Parts (P652) 
Compute Kalman Gains 10978.0 2 
Update Error Covariance Matrix 16267.0 2 
Update State Vector 6360.0 2 
Seq_Update Cov Matrix And State Vector 

Update 67897.0 2 
Kalman Update 

Update 233355.0 2 
Update_Error_Cov_Matrix_General Form 73222.0 2 

Kalman Filter_Complicated H Parts (P653) 
Compute Kalman Gains 24687.0 1 
Update Error Covariance Matrix 60033.0 2 
Update_State_Vector 12756.0 1 
Seq_Update Cov Matrix And State Vector 

Update 192150.0 10 
Kalman Update 

Update 361139.0 10 
Update Error Cov Matrix General Form 

1 

215098.0 10 
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APPENDIX B 

ADA SOURCE CODE INVENTORY 

The following tables comprise an inventory of all Ada source code used in the CAMP Armonics 

Benchmark Suite. In addition, the tables provide a cross-reference from the development name of a file 

to the ANSI name assigned to that file for transportation to other operating systems. 
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TABLE B-l. ADA SOURCE CODE INVENTORY 

(1 of 10) 

Armonics Benchmaifc Inventory and Cro»s-Reference 

Development Name                                                 ANSI Name 

CAMP Source Code 

00 l_000_COMMON_NA V_.ADA 

00l_00l_COMMON_NAV.ADA 

001_ IOO_ALTiTUDE_INTEaRATION.ADA 

00 l_200_COMP_GROUND_VEL.ADA 

00 l_300_COMP_aRAV_ACCEL_LATJN.ADA 

00l_400_OOMP_aRAV_ACCEL_SIN_LAT_IN.ADA 

A00IOOO.ADA 

AOOIOOI.ADA 

A00II0O.ADA 

A00I200.ADA 

AOO 1300. ADA 

AOO 1400. ADA 

00 l_500_COMP_HEADING.ADA 

00 l_600_UPDATE_VELOCITY.ADA 

00 l_700_SCALAR_VELOCiTY.ADA 

00 l_800_COMP_ROTATION_INCR. ADA 

A00IS00.ADA 

AOO 1600. ADA 

AOOI700.ADA 

AOO 1800. ADA 

002_000_WA_NAV_.ADA A002000.ADA 

002_OOI_WA_NAV.ADA 

002_l00_EAST_VELOCITY.ADA 

002_200_NORTH_VELOCTTY.ADA 

002_300_EARTH_REL_HOR_VELS.ADA 

002_400_TOTAL_ANOUL.AR_VEL.ADA 

002_500_CORJOLIS_ACCEL.ADA 

A00200I.ADA 

A002I00.ADA 

A002200.ADA 

A002300.ADA 

AQ02400.ADA 

A002S00.ADA 

002_600_CORIOLIS_ACCEL_TOT_RATES.ADA A002600.ADA 

002_700_RAD_OF_CURV.ADA 

002_800_TOT_PLATPORM_ROT_RATE.ADA 

002_900_EARTH_ROT_RATE.ADA 

AOO270O.ADA 

A002800.ADA 

A0O29OO.ADA 

002_A0O_EARTH_REL_ROT_RATE.ADA 

002_B00_LATITUDE.ADA 

002_OD0_LATITUDE_USINa_ATAN.ADA 

A002A00.ADA 

A002BOO.ADA 

A002OO0.ADA 

002_D00_LONaiTUDE.ADA 

002_E00_WANDER_ANOLE.ADA 

002_F00_EAST_VEL_SIN_COS.ADA 

002_O00_NORTH_VEL_SIN_COS.ADA 

002_H00_EARTH_REL_HOR_VEI.S_SIN_COS.ADA 

0O2_I00_LATiTUDE_USrNa_ATAN2.ADA 

A002D00.ADA 

A002E00.ADA 

A002F00.ADA 

A002O00.ADA 

A002H00.ADA 

A002100.ADA 

(K)2_JOO_LONOITUDE_lTSrNO_ATAN2.ADA 

002_KOO_WANDER_ANai.E_USrNO_ATAN2.ADA 

61 l_000_WOS72_Mi:i"RK_.ADA 

6 1.\.000_WOS72_UNiTLES.S_.ADA 

614_000_CONVERSION_FACTORS_.ADA 

615_000_UNrVERSAL_CONSTANTS_. ADA 

62I_000_BDT_.ADA 

A002JOO.ADA 

A002K00.ADA 

A«l IO00.ADA 

A6I3000.ADA 

A614000. ADA 

A6IS000.ADA 

A62I0OO.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (2 OF 10) 

Aimonici Benchmark inventory and Croxn-Reference 

Development Nome ANSI Name 

A621001. ADA 

A622000.ADA 

A62 200 I.ADA 

A63400O.ADA 

62l_OOI_BDT.ADA 

622_000_KDT_.ADA 

622_00I_KDT.ADA 

6MJIOO_CL.OCK_I1ANDLER_.ADA 

«M_00l_CLOCK_HANDLER.ADA 

644_000_DCM_.ADA 

A63400 I.ADA 

A644000.ADA 

644_00I_DCM.ADA 

65 l_000_KALMAN_COMMON_.ADA 

•9 l_00l_rCALMAN_COMMON.ADA 

651_ IOO_PU1_0_MANAOER.ADA 

•S l_200_P_MANAOER.ADA 

65 l_300_PHI_MANAGER.ADA 

652_O00_KALMAN_COMPACT_.ADA 

A64400 I.ADA 

A651000. ADA 

A65100 I.ADA 

A63II00.ADA 

A63I200.ADA 

A651300. ADA 

A652OO0.ADA 

652_OOI_KALMAN_COMPACT.ADA A6520OI.ADA 

652_IOO_CKO.ADA A652IOO.ADA 

652_200_17PDATE_P.ADA A652200.ADA 

652_3«)_UPDATE_X.ADA A652300.ADA 

652_400_UPDATE_P_AND_X.ADA 

652_500_KALMAN_IJPDATE.ADA 

652_600_UPDATU_P_aENERAL.ADA 

653_000JCALMAN_COMPL.ICATED_.ADA 

653JXilJCAL.MAN_COMPLICATED.ADA 

653_IOO_CXO.ADA 

A652400.ADA 

A6S2500.ADA 

A652600.ADA 

A653000.ADA 

A65300 I.ADA 

A653I00.ADA 

653_200_UPDATE_P.ADA A653200.ADA 

653_30O_UPDATE_X.ADA 

653_400_IJPDATE_P_AND_X.ADA 

A653300.ADA 

A653400.ADA 

653_5()0_KALMAN_UPDATE.ADA 

653_6(IO_lIPDATE_P_aENERAl..ADA 

A633SOO.ADA 

A6536O0.ADA 

M l_000_WA YPOINT_STEERINC}_.ADA 

M l_00l_WAYPOINT_STEERINO.ADA 

M l_300_STEERINO_VECTOR_OPNS.ADA 

MI_3IO_!NrnALtZE.ADA 

66 l_320_UPDATE. ADA 

MI_400_TURN_ANOLE_AND_DIRECnON.ADA 

MI_500_CRSSTRK_AND_IIDa_ERR_OI'NS.ADA 

661_5 IO_COMP_WI n-N_TURNING.ADA 

661_520_COMP_WHEN_NOTJ1 rRNINCJ.ADA 

MI_530_COMPUTE.ADA 

66 (_600_DIST_TO_nrRR_WA YPOINT.ADA 

M l_700_CX5MP_TURN_NONTURN_DIS T.ADA 

AMI000.ADA 

AM 1001.ADA 

AM 1300. ADA 

AM 1310. ADA 

AMI320.ADA 

AM 1400. ADA 

AM 1500. ADA 

AMI5I0.ADA 

AMI520.ADA 

AMIS30.ADA 

AMI600.ADA 

AMI700.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (3 OF 10) 

Aimonics Benchmark Inventory and Crosn-Rcfercnce 

Development Name ANSI Name 

66 l_800_TURN_TEST_OPNS.ADA A66I800.ADA 

66l_8 IO_STOP_TESTADA A66I8I0.ADA 

66I_820_START_TEST.ADA A66I820.ADA 

66 l_900_STEERINa_VECTOR_OPNS_ARCSIN.ADA A66I900.ADA 

66I_AOO_D1ST_TO_CURR_WAYPOINT_ARCSIN.ADA A66IA00ADA 

68 l_000_C_ALOEBRA_.ADA A68I000.ADA 

68 l_00l_C_ALGEBRA ADA A68100I.ADA 

68 l_200_MATRDC_OPNS ADA A68I200.ADA 

68 l_230_SET_TO_lDENTiTY_MATRa.ADA A68I230.ADA 

68 l_240_SET_TO_ZERO_MATRDC ADA 

68 l_400_MATRTX_SCALAR_OPNS.ADA 

A68I240.ADA 

A68I400.ADA 

68 l_S00_CROSS_PRODUCT ADA A68ISOO.ADA 

68 l_6t»_MATRDC_VECTOR_MU_T. ADA A68I6O0.ADA 

68 l_700_MATRK_MATRDC_MULT.ADA A68I700.ADA 

682_000_OENERAL_ALOEBRA_.ADA A682O00.ADA 

682_00l_OENERAL_ALOEBRA.ADA A68200I.ADA 

682_ IOO_VECTOR_OPNS_UC.ADA A682IO0.ADA 

682_200_MATRDC_OPNS_UCADA A682200.ADA 

682_M0_DYN_SPARSE_MATRDC_UCADA A682300.ADA 

682_400_SYMM_HA1.F_STORAGE_MATRK.ADA A682400.ADA 

682_500_SYMM_FULL_STORAaE_MATRDC_UC.ADA A682S00.ADA 

682_600_DIAOONAL_MATRKADA A682600.ADA 

682_700_VECTOR_SCALAR_OPNS_UC.ADA A682700ADA 

682_800_MATRK_SCAIAR_OPNS_UC.ADA A68280O.ADA 

682_900_DIAa_MATRDC_SCALAR_OPNS.ADA A682900.ADA 

682_AO0_MATRIX_MATRK_MULT_UR.ADA A682A00ADA 

682_BOO_MA1RK_VECTOR_MU1.T_UR.ADA A682B00ADA 

682_C00_VECTOR_VECTOR_TRANS_MULT_UR.ADA A682O00ADA 

682_D00_MATRK_MATRK_TRANS_MULT_UR.ADA A682D0OADA 

682_BOO_DOT_PRODUCT_OPN_UR.ADA A682EO0.ADA 

682_FOO_D1AO_FULI_MATRK_ADD_URADA A682P0O.ADA 

682_O00_VECTOR_OPNS_C.ADA A682O00ADA 

682_HOO_MATRJX_OPNS_C.ADA A682HOO.ADA 

682_J00_DYN_SPARSE_MATRK_C.ADA A682JO0ADA 

682_K00_SYMM_rUl.L_STORAaH_MATRrX_C.AnA A682KOOADA 

682_IJOO_VE(T()R_S('AI.AR_()PNS_C.AI)A A682UIO.ADA 

682_MOO_MATRIX_SCALAR_OPNS_C.ADA A682MOO.ADA 

682_N00_MATRIX_MA1RK_MUU_RADA A682N0O.ADA 

682_P00_MATRK_VECTOR_MULT_R.ADA A682P00.ADA 

682_Q00_VECTOR_VECTOR_TRANS_MUI.T_R.ADA A682Q0O.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (4 OF 10) 

Aimonks Benchmark Inventory and Crost-Reference 

Development Name 

682_R00_MATRTX_MATRIX_TRANS_MULT_R.ADA 

ANSI Name 

A682R00.ADA 

682_SOO_DOT_PRODUCT_OPN_R.ADA 

682_TOO_DIAG_RJLI._MATRBC_ADD_R.ADA 

682_WX>_VECTOR_MATRIX_MULT_UR.ADA 

A682S00.ADA 

A682T00.ADA 

A682U00.ADA 

682_V00_VECTOR_MATRIX_MULT_R.ADA 

682_W00_ABA_TRANS_DSP_MATRDC_SQ_MATRK.ADA 

682_X00_ABA_TRANS_VECTOR_SQ_MATRIX.ADA 

682_YOO_ABA_TRANS_VECTOR_SCALAR.ADA 

<
 

<
    <

    <
 

5s   _   58   58 
< 

<  <  < 

682_ZOO_COL_MATRIX_OPNS.ADA A682Z00.ADA 

683_O00_STANDARD_TRIG_.ADA 

68.\OOI_STDTRIO_SYSFNS.ADA 

684_000_GEOMETRJC_.ADA 

684_00l_OEOMETRIC.ADA 

684_IOO_UNIT_RADIAL_VECTOR.ADA 

684_2TO_UNIT_Nl._VECTOR.ADA 

684_300_SEG_UN1T_NL_VECTOR.ADA 

A683000.ADA 

A68300 I.ADA 

A68400O.ADA 

A68400I.ADA 

A684I00.ADA 

A684200.ADA 

A684300.ADA 

684_400_GREAT_CmCLE_ARC_LENOTH.ADA 

684_500_SEO_UNrr_NL_VECTOR_ARCSIN.ADA 

686_000_S1GNAL_.ADA 

686_001_SlONAL.ADA 

A684400.ADA 

A684S00.ADA 

A686000.ADA 

A68600I.ADA 

686_ IOO_UL_UMITER.ADA A686I00.ADA 

686_200_U_LIMrTER.ADA 

686_.100_L_LIMriER.ADA 

686_400_ABS_LIMITER.ADA 

686_500_ABS_LIMrrER_W_FLAG.ADA 

686_600_FIRST_ORDER_F1LTER.ADA 

686_700_TU.SnN_LAG_FILTER.ADA 

686_80O_TUSTIN_LEAD_LAa_FILTER.ADA 

A686200.ADA 

A686300.ADA 

A686400.ADA 

A686500.ADA 

A686600.ADA 

A686700.ADA 

A686800.ADA 

686_900_SECOND_ORDER_FILTER.ADA 

686_A00_TUSTIN_INIEORATOR_W_LrMrr.ADA 

686_B00_TUSTIN_INT_W_ASYM_LlMn-.ADA 

A686900.ADA 

A686A00.ADA 

A686BO0.ADA 

687_000_GP_MATH_.ADA 

687_OOI_GP_MATO.ADA 

687_ IOO_LOOKUP UVEN.ADA 

687_200_LOOKUPJINE VEN.ADA 

687_300_BNCREMENTOR.ADA 

687_400_DECREMEN! OR.ADA 

687_500_RUN_AVG.ADA 

687_600_ACCUM.ADA 

A687000.ADA 

A6870OI.ADA 

A687KI0.ADA 

A687200.ADA 

A687300.ADA 

A687400.ADA 

A687500.ADA 

A687600.ADA 

687_700_CHANGE_ACCUM.ADA A687700.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (5 OF 10) 

Armonics Benchmark Inventory and Crews-Reference 

Development Name ANSI Name 

«87_«00_CHANOE_CALC.ADA 

687_900_rNTEORATORADA 

A687800.AOA 

A687900.ADA 

687_A00_INTERPOLATE.ADA 

687_D00_RSOS.ADA 

A687A00.ADA 

A687D00.ADA 

687_B0O_SK3N.ADA 

687_F0O_MEAN_VAL.ADA 

A687B0O.ADA 

A687P0O.ADA 

6«7_O00_MAD.ADA 

687_H(IO_LOOKUP_TWOWAY.ADA 

A687O00.ADA 

A687HOO.ADA 

688_00l_POLYNOMIALS.ADA 

68«_2O0_CHEBYSHEV.ADA 

688_2 IO_RADIAN_OPERATIONS.ADA 

S88_220_DEOREE_OPERATIONS.ADA 

688_230_SEM1CIRCLE_OPERATK)NS7VDA 

688_300_FKE.ADA 

688_3 l0_SEMICIRCLE_OPERATlONS.ADA 

688_400_HART.ADA 

A6B800I.ADA 

A688200.ADA 

A6882IO.ADA 

A688220.ADA 

A688230.ADA 

A688300.ADA 

A6883IO.ADA 

A688400.ADA 

688_4IO_RADIAN_OPERAT!ONS.ADA 

688_420_DEORUE_OPERAT!ONS.ADA 

«88_500_HASTINaS.ADA 

A6884I O.ADA 

A688420.ADA 

A688300.ADA 

688_5 IO_RADIAN_OPERATKWS.ADA A6883I0.ADA 

688_520_DEGREE_OPERATIONS.ADA 

688_800_MOD_NEWTON_RAPHSON.ADA 

A688520.ADA 

A688800.ADA 

688_900_NEWTON_RAPHSON.ADA 

fi88_AOO_TAYLOR_SERIES.ADA 

688_A IO_RADIAN_OPERATK)NS.ADA 

688_A20_DEOREE_OPERATIONS.ADA 

A688900.ADA 

A688AOO.ADA 

A688AI0.ADA 

A688A20.ADA 

688_A40_NATURAL_LOa.ADA 

688_A50_BASE_LOO.ADA 

A<*8A40.ADA 

A6MA50.ADA 

688_BOO_OENL_POLYNOMIAL.ADA 

688_CW)_SYSTEM_FUNCT10NS.ADA 

688_CI0_RADIAN_OPNS.ADA 

688_C20_SEMICIRCLE_OPNS.ADA 

688_C30_DEOREE_OPNS.ADA 

«88_C40_SQUARE_ROOT.ADA 

«88_C50_B ASE_ 10.ADA 

«88_C60_BASE_N.ADA 

688_DW_OfWTrNUED_FRACTK)NS.ADA 

688_DI0_RAD!AN_OPERATlONS.ADA 

<W"_EOO_CODY_WArrE.ADA 

«88_E40_NATURAL_LOa.ADA 

A688BOO.ADA 

A688G0OADA 

A688CI0.ADA 

A688C20.ADA 

A688O0.ADA 

A688C40.ADA 

A688C50.ADA 

A<S88CfiO.ADA 

AA88DOD.ADA 

AA88DIO.ADA 

A688EOO.ADA 

A688E40.ADA 
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TABLE B-l. ADA SOURCE CX)DE INVENTORY (6 OF 10) 

Armonics Benchmark Inventory and Cross-Reference 

t Development Nnme ANSI Name 

688_E50_BASE_N.ADA A688E30.ADA 

fi88_FOO_REDUCTION.ADA A688F00.ADA 

• 85 l_000_UNIT_CONVERSION_. ADA A8 51000. ADA 

85 l_00l_UNIT_CONVERSION.ADA A85I0OI.ADA 

890_000_QUATERNION_.ADA A890000.ADA 

890_OOI_QUATERNION.ADA A89000I.ADA 

890_IOO_EULER.ADA A890I00.ADA 

890_200_NORMALEED.ADA A89020O.ADA 

I Illi Missile Code (some modified) 

B ARO_ALT_FOR_KF_ IT-SI S.ADA MBAFK1T.ADA 

BARO_TEST_DRlVER.ADA MBROTES.ADA 

DATA_RETRIEVAI._POR_aUlDOPNS_TEST.ADA MDTARET.ADA 

DO_SUM_BARO_Ai;riMETER_POR_BlAS_TEST.ADA MDSUMBA.ADA 

DUMMY.AM.ADA MDMMYAM.ADA 

DUMMY_DO_SUM_BARO.ADA MDMMYDO.ADA 

DUMMY_INmALIZE_NAVIOATOR.ADA MDMMYIN.ADA 

DUMMY_VELOCnY_COMPUTATIONS.ADA MDMMYVE.ADA 

F.ARTH_TO_BODY_TRANSPORM.ADA MERTHTO.ADA 

ENVIRONMENT_I:OR_KF_TE_TS.ADA MEVIRON.ADA 

EXECUTE_NAVIGATORADA MXNAVIO.ADA 

l:XKCUTE_NAVIGATOR_TEST.ADA MEXECUT.ADA 

EX_NAV_KA1.MAN_FILTER_STUB.ADA MEXNAVK.ADA 

OUlD_COMPUlBR_FOR_OUrDOPNS_TEST.ADA MOUIDCO.ADA 

INCORPORAT1LKAI.MAN_CORR.AI )A MINCORP.ADA 

INTERNAI._BUS_BROADCAST_POR_KF_TESTS.ADA MINTERN.ADA 

ISA_FOR_KF_TESTS.ADA 

KALM AN_FILTER_STUB.ADA 

MISAFORADA 

MKALMAN.ADA 

M007_ IOO_GU1DANCE_OPNS. ADA MOOT 100. A DA 

M007_l IO_PROCESSOR_MODIFIED.ADA M007IIO.ADA 

M007_l 11_PR1NCIPA1._VA1.UE.ADA M007II I.ADA 

M007_l 12_PERl=ORM_lNIT.ADA M007II2.ADA 

M007_ 113_WAYTT_CNTRl._OPNS.ADA M00711.1. ADA 

M<K>7_ 1 l4_ll.K)in •_'XJNTROL.ADA M007II4.ADA 

M007_l l5_IIRST_ORDER.ADA M007II5.ADA 

MOI2J*>0_aUIDAN<T_DATA_TYPES_.ADA Mni2000.ADA 

MOI2_OOI_GUIDANCE_DATA_TYPl-S.ADA M0I200I.ADA 

; M(»l5_«nf)_MISSION_DATA_.ADA MO 13000. ADA 

MOI4_Om_NAV_CT}MPUTER_DATA_TYPES_.ADA MOI4000.ADA 

Mni4_0t>l_NAV_COMPUTER_DATA_TYPES.ADA M0I400I.ADA 

> MOI5_OOI_NAVIOATION_OPERATIONS.ADA M0I500I.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (7 OF 10) 

AimonicK Benctimaik Inventory and Croas-Reference 

Development Name ANSI Name 

MOI5_0200_EXECUTE_NAV1QATORADA MOI5020ADA 

M0IS_0900_SLAVE_CNEADA M0I.WX1.ADA 

M0IS_0C00_BARO_LOOP_COMinrrATIONS.ADA M01 WOO ADA 

M0l5_0HT»_NAV_OPS_TEST_CODEADA MOI50HOADA 

MOI7_000_ALfONMENT_MEASUREMENT.S_.ADA MO 17000 ADA 

MOI«_000_NAV_SYSTEM_.ADA MOiaoOOADA 

MOI9_000_KALMAN_TYPES_ADA MO 19000. A DA 

MOI9_00l_KALMAN_TYPESADA MO 19001. ADA 

MOI9_OIOO_F_OPERATIONS.ADA M0I90I0ADA 

M019_0200_PIII_OPERATIONS.ADA MO 19020. ADA 

MOI9_0800_ACITVEJCHPOADA MO 19010. A DA 

MO I9_0900_PASSIVE_KHPOADA M0I9O90ADA 

M0l9_0A00_DOPPLER_KHPO.ADA M0I90AO.ADA 

M02I .O0O_KAI.MAN_FILTER_.ADA M02IOOOADA 

M022_000_ENVIRONMENT_.ADA MO22OO0ADA 

MO_4_000_H_ROW_.ADA MO24O00ADA 

M024_00l_H_ROW.ADA M02400IADA 

M6I I_000_WOS72_METR1C_.ADA M611000 ADA 

M6I2_000_WOS72_EN01NEERINO_.ADA M6I2O0OADA 

MEASUREMENTS_FOR_KF_TESTS.ADA MMEASURADA 

MESSAaE_MANAOER_POR_OUIDOI>NS_TEST.ADA MMESSAOADA 

M!SSION_DATA_FOR_OUIDOPNS_TEST.ADA MMISSIOADA 

NAVIOA'nON_OPERATIONS_.ADA MNAVIOAADA 

NAV_SYSTEM_STUB.ADA MNAVSYSADA 

OCU_FOR_KF_TESTS.ADA MOCUFORADA 

SCP_FOR_KF_TESTS.ADA MSCPFOR.ADA 

TLM_FORJU_TESTS.ADA MTLMPOR.ADA 

VKLOaTY_CX)MPUTATIONS.ADA MVELOCI.ADA 

VELOCTrV_Ct)MPUTATIONS_TEST.ADA MVELOCT.ADA 

VF.L_TEST_DRIVER.ADA MVELTESADA 

WANDER_ANaLE_rOMPUTATIONS.ADA MWANDER.ADA 

Compilation Benchmark Source C ode 

IO_WGS72U_.ADA CI0WOS7.ADA 

20_NPNAV_.ADA C20NPNA.ADA 

2I_NPNAV.ADA C2INPNA.ADA 

W_KPCT)MMON_.AI)A OOKFCO.ADA 

.1IJCFlX>MMON.ADA CJIKFCO.ADA 

40_KFCOMPl.ICATnD_.ADA C40KFCO.ADA 

41JCFOOMPLICATEDADA C4IKFCOADA 

W_POI.Y_.ADA C50POLY.ADA 
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TABLE B-l. ADA SOURCE CX)DE INVENTORY (8 OF 10) 

Amionics Benchmark Inventory and Cross-Reference 

> Development Name ANSIN-ime 

5l_POLY.ADA C5IPOLYADA 

fiO_GVMA_.ADA C6fX)VMA.ADA 

• 6I_GVMA.ADA C6IGVMAADA 

70_GPMATH_.ADA C70GPMA.ADA 

7I_GPMATHADA C7IGPMA.ADA 

80_CVMA_.ADA C80CVMAADA 

8I_CVMA.ADA C8ICVMAADA 

90.STDTRIG_.ADA C90STDT.ADA 

9I_STDTRIG.ADA C9ISTDTADA 

A0_OEO_.ADA CAOGEOX.ADA 

AI_GEO.ADA CAIOEOX.ADA 

B0_UNIVCONST_.ADA CBOUNIVADA 

C0_CONVFACTORS_.ADA C03CONV.ADA 

D0_BDT_.ADA CDOBDTX.ADA 

CDIBDTX.ADA DI.BDT.ADA 

E0_WPS_.ADA CEOWPSX.ADA 

EI_WPS.ADA CEIWPSX.ADA 

P0_WOS72_.ADA CF0WOS7.ADA 

O0_KDT_.ADA COOKDTX.ADA 

OI.KDT.ADA CGIKDTX.ADA 

ZI_NP_TDRVR.ADA 

Z2_WPS_TDRVR.ADA 

CZINPTD.ADA 

CZ2WPST.ADA 

Z3_KF_TDRVR.ADA CZ3KFTD.ADA 

Original Benchmark Source Code 

683A_000_STANDARD_TR!G_.ADA 

683A_0T)l_STDTRIG_FrKF_HASTINGS.ADA 

A683AOO.ADA 

A683A0O.ADA 

A683B00.ADA fi83B_00O_STANDARD_TRIG_.ADA 

*83B_00 l_STDTRIG_FIKE_HASTINGS.ADA A683BOO.ADA 

683_002_STD_TRG_NOSYS.ADA A683O02.ADA 

fi87_CO l_NEWTON_SQRT ADA A687O0I.ADA 

688_000_POLYNOMIALS_.ADA A688000.ADA 

688_3 IO_SEMICma.E_OPERATIONS.ADA A6883IO.ADA 

ANALYZE.ADA BANALYZ.ADA 

BENCHMARKrNG_TOOI,S.ADA BBNMARK.ADA 

BENCHMARKING_TOOLS_.ADA BBNOIMA ADA 

BENaiMARK.CONTENTS.APA BBNCHMR.ADA 

; B ENOIM ARK.CONI ENTS_. ADA BBNCHMK.ADA 

arEBYSHEVfi_DRiVER.ADA BCHEBY6.ADA 

CHEBYSHEV9_DRIVER.ADA BCHEBY9.ADA 

* CODY6_DRIVER.ADA BCDY6DR.ADA 
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TABLE B-l. ADA SOURCE CODE INVENTORY (9 OF 10) 

Armooics Benchmaifc Inventory and Crona-Reference 

Development Nome ANSI Name 

CODY9_DRIVER.ADA BCDY9DR.ADA 

CONTINUED6_DRIVER.ADA BCNT6DR.ADA 

CONTINUED9_DRlVER.ADA BCNT9DR.ADA 

CX3NTINUED_FRACTION_BENCHMARK.ADA BCNTFRA.ADA 

CONTINUED_FRACTION_BENCHMARK_.ADA BCNTFRCADA 

CPU_CLOCK.ADA BCPUCLO.ADA 

FKE6_DRIVER.AOA BKIKE6D.ADA 

FIKB9_DRlVnR.ADA BFKE9D.ADA 

HART«_DRJVER.ADA BHART6DADA 

HART9_DRJVER.ADA BHART9D.ADA 

rUSTINOS6_DR.VER.ADA BHAST6D.ADA 

HASTINOS9_DRjVER.ADA BIIAST9D.ADA 

INT.BENCH MARK INO.TOOLS .ADA BINTBEN.ADA 

INT_BENCHMARKINa_TOOLS_.ADA BINTBNCADA 

IOVLMAN.COMMON_TEST.ADA BKALMNC.ADA 

KALMAN_COMMON_TEST_.ADA BKALMAN.ADA 

KALMAN_COMPACT_DRIVER.ADA BKLMANCADA 

KALMAN_COMPACT_TEST.ADA BKLMNCO.ADA 

KALMAN_COMPA(T_TRST_.ADA BKLMCOM.ADA 

KALMAN_COMPtlCATED_DRJVERADA BKLMNCM.ADA 

KALMAN_COMPLICATED_TEST.ADA BKJ.NCOM.ADA 

KALMAN_COMPLICATED_TEST_.ADA BKLMCOM.ADA 

MATRK_OUTPUT.ADA BMATRK.ADA 

MATRIX_OtrrPUT_.ADA BMTRDCO.ADA 

NEWTON6_DRJVER.ADA BNWTN6D.ADA 

NEWTON9_DRIVER.ADA BNEWTN9.ADA 

POLYNOMlALS_NO_SYS_FUNC.ADA BPLYNOM.ADA 

P< ILYNOM1 ALS_NO_SYS_FUNC_.ADA BPOLYNO.ADA 

K)LYNOMIAL_BENCHMARK.ADA BPOLYNMADA 

POLYNOMlAL_BENCHMARK_.ADA BPOLNOM.ADA 

REDUCE_SIM_LOO.ADA BREDUCE.ADA 

SYSTEM_DRTVER.ADA BSYSTEM.ADA 

TAYLORf»_DEUREE„ DRIVER.ADA BTYLOR6.ADA 

TAYLOR*_RADIAN_DRJVER.ADA BTAYLR6.ADA 

TAYLOR9_DEUREE_DRTVER.ADA BTYLOR9.ADA 

TAYLOR9RADIAN .DRIVER.ADA BTAYl.R9.ADA 

Benchmark VAX/VMS CoHMBWlll Pre icedurc* 

ACr_COMPn-ATION_RlJN.COM JACTCOM.COM 

COMPU.ATION_BKNCHMARKS.COM JCMPtLA.COM 

COMPD-F._BKNniMARK_SUPPORT.COM JCOMPIL.COM 



TABLE B-l. ADA SOURCE CODE INVENTORY (CONCLUDED) 

Amionics Benchmark Inventory and Cross-Reference 

Development Name ANSI Name 

COMPILE_TOOl.S.COM JCMPLTO.COM 

INT_EXEC l_COM_LINK.COM JINT1CM.COM 

INT_EXEC2_«)M_LINK.COM JINT2CM.COM 

INT_EXEC3_COM_LlNK.COM JINT3CM.COM 

MODIFIED_POLY6_COM_LINK .COM JMDPOL6.COM 

MODIFIED_POl.Y9_COM_LINK.COM JMDPOL9.COM 

POLY6_COM_LnMK.COM JPLY6CM.COM 

PfJLY9_COM_LINK.COM JPLY9CM.COM 

SYSTEM_COM_LINK.COM JSYSCML.COM 

TLD_BENCHMARKS_C0M_L1NK.COM JTLDBCO.COM 

TLD_COMPILATION_RUN.COM JTLDCOM.COM 

VAX_ANALYZE_COM_LINK.COM JVAXANL.COM 

VAX_ANALYZE_POLY.COM JVAXALY.COM 

VAX_BENCHMARKS_COM_LINK.COM JVAXBSC.COM 

VA X_COMPnJVTION_RUN.COM JVAXCOM.COM 

VAX_IN1_EXECI_RUN.COM JVAXI1R.COM 

VAX_IN1_EXEC2_RUN.COM JVAXI2R.COM 

VAX_INT_EXEC3_RUN.COM JVAXI3R.COM 

VAX_POLY_RlW.COM JVAXPRU.COM 

ANSI/Development Name Convei ■sion 

ANSI2DV.COM ANSI2DV.COM 

DV2ANS1.COM DV2ANSI.COM 

Standard Output Data Files 

VAX_1NT_EXECI_RUN.DAT DVXIEIR.DAT 

VA X_INT_EXEC2_RUN.DAT DVXD32R.DAT 

VAX_INT_EXEC3_RUN.DAT DVXD33R.DAT 

HART6_DRJVER.ANA DHART6D.ANA 

HART6_DRTVER.DAT DHART6D.DAT 
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INITIAL DISTRIBUTION LIST 

GTE GOVERNMENT SYS CORP 1  CARNEGIE MELLON UNIV/ 
> ADVANCED DI&xTAL SYSTEMS 1   SOFTWARE ENGINEERING INST     1 

AFATL/FXG                         1 \    N0AA/ERL/R/E/AL1               1 
MILITARY COMPUTER SYSTEMS !  INTERMETRICS, INC/G. RENTH      1 

1 LOCKHEED/O/62-81, B/563, F15 I  INTERMETRICS, INC/D.P. SMITH    1 
HUGHES/FULLERTON 1  FORD AEROSPACE/WEST DEVEL DIV   1 
UNISYS/MS-E1D08 1  AD/ENE                        1 
WESTINGHOUSE/BALTIMORE I  R0CKWELL/MS-GA21               1 
AFWAL/AAAS-2 1  GRUMMAN CORP/MS D-31-237        1 
BOOZ-ALLEN 4 HAMILTON, INC 1  INSTITUTE OF DEFENSE ANALYSIS   1 
BOEING AEROSPACE COMPANY/MS 8H-09 I  TELEDYNE BROWN/MS 178           1 
BOEING AEROSPACE CO 1  USAF/TAWC/SCAM                 1 
AD/YGE I  BOEING AEROSPACE CO/D. LINDBERG  1 
SOFTWARE PRODUCTIVITY CONSORTIUM    « > LOGICON                       1 
ARMY CECOM/AMSEL-COM-IA I  EASTMAN KODAK/DEPT 47           1 
NAVAL TRAINING SYS CENTER/CODE 251 1  SYSTEMS CONTROL TECH, INC       1 
SCIENCE APPLICATIONS INTL CORP 1  E-SYSTEMS/GARLAND DIV           1 
RAYTHEON/MSL SYS DIVISION 1  AFWAL/AAAF                    1 
CALSPAN 1  MARTIN DEVELOPMENT             1 
KAMAN SCIENCES CORPORATION !  MA COMPUTER ASSOCIATES INC      1 
NAVAL RESEARCH LAB/CODE 5595 1  IBM FEDERAL SYS DIV/MC 3206C    1 
CARNEGIE MELLON UNIV/SEI/SHOLOM 1  MCDONNELL DOUGLAS/INCO, INC     1 
COLEMAN RESEARCH CORP 1  UNITED TECH, ADVANCED SYS       1 
COLSA, INC 1  MCDONNELL AIRCRAFT CO/DEPT 300  1 
CONTROL DATA CORPORATION 1  WESTINGHOUSE ELEC/MS 132        1 
WINTEC 1  MHP FU-TECH, INC               1 
CONTROL DATA/DEPT 1855 I  ITT AVIONICS                   1 
DACS/RADC/COED 1  COSMIC/UNIV OF GA              1 
RAYTHEON/EQPT DIV I  NAVAL OCEAN SYS CENTER/CODE 123  1 
BMO/ACB I  NAVAL WEAPONS CTR/CODE 3922     1 
DDC-I, INC I  ODYSSEY RESEARCH ASSOCIATES, INC 1 
ENGINEERING & ECONOMICS RESEARCH/ USA ELEC PROVING GRD/STEEP MT-DA 1 

DIV OFFICE PATHFINDER SYS                 1 
BDM CORP I  BDM CORPORATION                1 
AFATL/FXG/EVERS I  PERCEPTRONICS, INC             1 
ESD/SYW-JPMO I  PHOENIX INTERNATIONAL          1 
FORD AEROSPACE & CQMM CORP/MS H04 1  MCDONNELL DOUGLAS ASTRO CO      1 
UNIV OF COLORADO #202 I  GTE LABORATORY/RUBEN PRIETO-DIAZ 1 
ANALYTICS PROPRIETARY SOFTWARE SYSTEMS    1 
AFWAL/FIGL I  ADVANCED TECHNOLOGY            8 
WESTINGHOUSE ELECTRIC CORP/MS 5220 I  STANFORD TELECOMMUNICATIONS, INC 1 
GENERAL DYNAMICS/MZ W2-5530 1  RATIONAL                      1 
HONEYWELL INC I  LOCKHEED MISSILES & SPACE CO    1 
TAMSCO I  HERCULES DEFENSE ELEC SYS       1 
STARS                              1 AEROSPACE CORP                 1 

1 
FORD AEROSPACE/MS 2/206 ROGERS ENGINEERING & ASSOCIATES  1 
GRUMMAN HOUSTON CORPORATION         1 ADASOFT INC                    1 
NAVAL AVIONICS CENTER/NAC-825       1 ESD/XRSE                      1 
NASA JOHNSON SPACE CENTER/EH/GHG    1 SANDERS/MER 21-1212 

* BOEING AEROSPACE/MS-8Y97           1 CSC/ERIC SCHACHT               1 
HARRIS CORPORATION/GISD            1 
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INITIAL DISTRIBUTION LIST (CONCLUDED) 

SCIENCE APPLICATIONS INTER CORP 
HQ CASE/CBRC 
GOULD INC/CSD 
HQ AFSPACECOM/LKWD/STOP 32 
SVERDRUP/EGLIN 
HONEYWELL INC/CLEARWATER 
TECHNOLOGY SERVICE CORP 
AEROSPACE/LOS ANGELES 
SOFTWARE ARCHITECTURE & ENGIN 
LORAL SYSTEMS GROUP/DA76-C2E 
NADC/CODE 7033 
UNISYS/PAOLA RESEARCH CTR 
SIRIUS INC 
GENERAL RESEARCH CORP 
SOFTECH, INC/R.L. ZALKAN 
SOFTECH, INC/R.B. QUANRUD 
SOFTWARE CERTIFICATION INS 
SOFTWARE CONSULTING SPECIALIST 
SOFTWARE PRODUCTIVITY SOLUTIONS, INC 
STAR-GLO INDUSTRIES INC 
NADC/CODE 50C 
WESTINGHOUSE/BALTIMORE 
MITRE CORPORATION 
SYSCON CORP/I. WEBER 
SYSCON CORP/C. MORSE 
SYSCON CORP/T. GROBICKI 
AEROSPACE CORPORATION/M-8-026 
TEXTRON DEFENSE SYSTEMS 
GENERAL DYNAMICS/MZ 1774 
TIBURON SYSTEMS, INC 
TRW DEFENSE SYS GROUP 
NASA SPACE STATION 
BALLISTIC MSL DEF ADVANCED/ 
TECHNOLOGY CENTER 
IBM CORPORATION/FSD 
VISTA CONTROLS CORPORATION 
VITRO CORPORATION 
NAVAL RESEARCH LABORATORY/CODE 5150 
CACI, INC 
AFSC/PLR 
DIRECTOR ADA JOINT PROGRAM OFFICE 
MCDONNELL DOUGLAS ASTRONAUTICS/ 
E 434/106/2/MS22 

SDIO/S/PI 
ADVANCED SOFTWARE TECH SPECIALTIES 
DTIC-DDAC 
AFCSA/SAMI 
AUL/LSE 

FTD/SDNF 
AFWAL/FIES/SURVIAC 
HQ  USAFE/INATW 
AFATL/CC 
AFATL/CA 
AFATL/DOIL 
6575 SCHOOL SQUADRON 
IITRI 

1 
1 
1 
1 
1 
2 
1 
1 
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INFORMATION 



DEPARTMENT OF THE AIR HNtCE 
WRIGHT LABORATORY (AFSC) 

EGLIN AIR FORCE BASE, FLORIDA, 32542-5434 

mm ^ 
SUBJECT: Removal of Distribution Statement and Export-Control Warning Notices 

TO: Defense Technical Information Center 
ATTN: DTIC/HAR (Mr William Bush) 
Bldg 5, Cameron Station 
Alexandria, VA 22304-6145 

1. The following technical reports have been approved for public release by 
the local Public Affairs Office (copy attached). 

Technical Report Number AD Number 

«. 88-18-Vol-4 ADB 120 251 
Z. 88-18-Vol-5 ADB 120 252 
3 88-I8-V0I-6 ADB 120 253 

-4. 88-25-Vol-l                      ADB 120 309 
S. 88-25-Vol-2                       ADB 120 310 

fe. 88-62-Vol-l                      ADB 129 568 
1, 88-62-Vol-2                      ADB 129 569 
^. 88-62-Vol-3                       ADB 129-570 

9• 85-93-Vol-l                       ADB 102-654 u~- 

40. 85-93-Vol-2                       ADB 102-655 
KK.  85-93-Vol-3                       ADB 102-656 

- 

KZ.  88-18-Vol-l                      ADB 120 248 
»S. 88-18-Vol-2                      ADB 120 249 
14. 88-18-Vol-7                      ADB 120 254 
15. 88-I8-V0I-8                      ADB 120 255-^ 
\1o. 88-18-Vol-9                       ADB 120 256 
(7. 88-18-Vol-lO                      ADB 120 257^ 
1fc.88-18-Vol-ll                      ADB 120 258 
19.88-18-Vol-12                      ADB 120 259 

2. If you have any questions regarding this request call me at DSN 872-4620. 

A 

Chief, Scientific and Technical           AFDTC/PA Ltr, dtd 30 Jan 92 
Information Branch 
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KPMTMBfT OF TNI MR POM 
HEAKUARTOW AM RORCEDEVEWMENT TEST CENTO (AF8Q 

MUM AIR FORCE BASE. FLOMOAKMMOM 

REPLY TO 
ATTNOF:     PA (Jim Swinson, 882-3931) 30 January 1992 

SUBJECT:    clearance for Public Release 

TO:  WL/MJA 

/ 
The following technical reports have been reviewed and are approved for 
public release; AFATL-TR-88-18 (Volumes 1 
4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2) 
and AEA3J>TR-85-93 (Volumes 1 thru 3). 

& 2), AFAIL-TR-88-18 (Volumes 
, AFATL-TRr88-62 (Volumes 1 thru 3) 

%, 
VCCINiTl N.  PRIBYLA,  Lt Col, 
Chief of Public Affairs 
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